出道即巅峰,掀起AI领域巨浪的GPT-3,被过誉了吗?

机器之心报道

编辑:蛋酱、杜伟、小舟

是时候重新审视这个「无所不能的」模型了!

GPT-3,「出道即巅峰」界的代表。

2020 年 5 月,OpenAI 高调推出了一款具有 1750 亿参数的自回归语言模型「GPT-3」,在人工智能领域掀起了一阵巨浪。从参数量上看,它比当时全球最大的深度学习模型 Turing NLP 大上十倍,从功能上看,它可以答题、翻译、写文章,还带有一些数学计算的能力。

这让人浮想联翩:「莫非,真正的 AI 要来了吗?」

无所不能,还是媒体的过誉?

顾名思义,GPT-3 是 OpenAI 发布的自动补全工具第三代,这个项目经历了多年的发展,一直代表着 AI 文本生成方面的最新方向。从许多方面的特征看,这些进步类似于 2012 年以来 AI 图像方面的飞跃——在那之后,人工智能的新一轮浪潮汹涌而来。

和所有深度学习系统一样,GPT-3 也在从数据中寻找模式。为了简化,该程序已经对庞大的文本集进行了训练。这些规则对于人类来说是未知的。但是它们被存储为数十亿个 GPT-3 的神经网络的不同节点之间的加权连接。重要的是,在这个过程中,没有涉及到人工输入:该程序在没有任何指导的情况下找出了模式,然后将其用于完成文本提示。

GPT-3 的突出特点是它的运行规模和其惊人的能够自动完成的任务。

第一代 GPT 发布于 2018 年,包含 1.17 亿个参数。2019 年发布的 GPT-2 包含 15 亿个参数。而 GPT-3 拥有 1750 亿个参数,是其前身的 100 多倍,是同类程序的 10 多倍。

自从 GPT-3 推出以来, OpenAI 向社区开放了商业 API,鼓励大家使用 GPT-3 尝试更多的实验。目前是以内测版的形式向用户出售,功能包括简单的文本输入输出界面等。

所以我们才看到了这些眼花缭乱的案例:

基于问题的搜索引擎

你可以将它理解为「专注于问答的谷歌」:键入问题, GPT-3 就会链接到相关的维基百科地址作为答案。

与历史人物对话

鉴于 GPT-3 已经接受过大量数字书籍资料的训练,所以它吸收了很多历史人物的观点与知识。这意味着你可以像和哲学家聊天一样,开启与 GPT-3 的对话。

当然,你和图灵、香农的对话,也许会被哈利波特突然打断……

基于文本描述生成代码

用简单的文字描述你想选择的设计元素或页面布局, GPT-3 就会弹出相应代码。此外,它会自动添加代码注释:

文本样式转换

图源:推特用户 @Francis Jervis。

GPT-3 可将某种样式编写的输入文本,更改为另一种样式,不同文体之间自由切换。

绘图助手

除了生成代码,你也可以让 GPT-3 帮你画图、

图像补全

早在 GPT-2 时代,模型的自动补全图像功能就已经实现。如下图所示,最右一列是原始图片,最左侧是输入的半张图片,中间的四列是 GPT-2 自动补全的图片。

GPT-3 当然也能做到这一点,最令人印象深刻的是,它未曾接受过什么特定训练,不再需要微调,就能够完成这些任务。这也说明了其所具备的模型灵活性。

总体来看,GPT-3 做到了一点:「用过的人都说好」,这表示它已经接近封神的地位。

深度学习之父 Geoffrey Hinton 这样评价:「如果以 GPT-3 的出色性能推算未来,生命、宇宙和万物的答案也不过是 4.398 万亿个参数。」

尽管 GPT-3 确实足够优秀,但发布一个多月以来,相关领域媒体的鼓吹情绪变得越来越强烈,以致于 OpenAI 的 CEO Sam Altman 在推特上公开表示:「GPT-3 的夸大宣传是太多了。」

GPT-3:我没有那么完美

GPT-3 被夸大宣传,原因出在哪里呢?The Verge 上的一篇文章提供了详细的解读,指出了 GPT-3 在输出偏向性、商业价值和数据偏见等方面存在着不可忽视的缺陷。

输出具有偏向性且会犯低级错误

我们可以看到,所有这些示例都需要上下文,这样才能更好地理解。语言模型(包括 GPT-2)通常的情况是,它们在完成基础培训后进行微调,以执行特定的任务。

GPT-3 却没有接受过完成任何特定任务的培训,也不需要任何微调。例如在语法难题中,它需要一些类似于预期输出类型的示例(称为 few-shot 学习)。但总的来说,该模型是如此庞大,以至于各种功能都可以嵌套在它的节点上。用户只需要输入正确的提示就可以「骗过」它们。

此外,需要看到,上下文带来的并不只是优点。

首先,有炒作因素。正如 AI 研究者 Delip Rao 在一篇解构关于 GPT-3 炒作文章中指出的那样,早期的一些软件 demo 热衷于吹捧该技术的潜力,而忽略了它的弊端。

其次,GPT-3 在输出「筛选」上具有偏向性,通常展示起作用的结果,而忽略掉那些不起作用的。所以,GPT-3 的能力在细节上有较多缺陷。仔细检查输出就会发现一些没人会犯的愚蠢而粗俗的错误。

举例而言,在使用 GPT-3 与历史人物交谈的项目中,当用户与虚拟的乔布斯交谈时,问题是:「你现在在哪里?」,虚拟的乔布斯回答说:「我在加利福尼亚州库比蒂诺的苹果总部。」这是一个连贯通顺的答案,但显然不是一个值得信赖的答案。

此外,在回答一些琐碎问题或者基本数学问题时,也能够发现 GPT-3 犯了类似的错误。例如,无法正确地回答 1000000 之前的数字是什么。

值得商榷的商业价值

此外,GPT-3 的种种输出错误引出了另一个问题:它不可信赖的性质是否会影响其整体效用?毕竟 GPT-3 很大程度上是 OpenAI 的一个商业项目。

客户已经基于各种目的来试验 GPT-3 的 API,如创建客服机器人和自动化内容审核等。但是,GPT-3 会输出前后不一致的答案,这将成为企业的一大不利因素。试想,有谁希望自己创建的客服机器人时不时地冒犯到客户?并且,如果无法确认 GPT-3 输出可靠的答案,那么为什么还要将它用作教育工具呢?

一位不愿意透漏姓名的谷歌高级 AI 研究员认为,GPT-3 只能实现一些轻松任务(trivial task)的自动化处理,而对此其他一些规模更小、价格更低的 AI 程序同样可以很好地办到。并且,GPT-3 的不可靠性将最终损害其商业价值。

此外,纽约大学副教授、AI 和游戏研究者 Julian Togelius 这样评价 GPT-3:「它就像是一位没有认真复习的聪明学生,试图胡言乱语以期在考试中蒙混过关。它会扯到一些已知事实、似是而非的事实、谎言,并将这些串联从而看起来像是流畅的叙述。」

与此同时,很多人也不得不承认一个事实:知道如何胡扯的聪明学生会走得更远,因为人们通常不会仔细审查他们说的话。

输出的文本存在偏见

最后,GPT-3 还存在一个严重问题,那就是它的输出存在偏见。

英伟达机器学习研究主管 Anima Anandkumar 教授指出,GPT-3 的部分训练是在 Reddit 过滤后的数据上完成的,基于这些数据构建的模型会生成「偏见性极大的」文本。

Anima Anandkumar

仅以之前的 GPT-2 模型为例,在 2019 年的一篇论文《The Woman Worked as a Babysitter: On Biases in Language Generation》中,GPT-2 模型被要求补全「这个人在当地沃尔玛从事汽车推销员工作」后的句子时,它输出了各种冒犯黑人或女性的句子,如「黑人干皮条客的勾当长达 15 年」,或者「这名女子以 Hariya 的名头做着娼妓的生意」。

GPT-3 有时也会表现出类似的偏见。

针对 GPT-2 和 GPT-3 模型在输出文本时固有的偏见,AI 领域的一些人认为它只是在复制训练数据中人类的偏见而已,而且这些带有偏见的句子可以删除。但是,带有偏见的输出可能导致其更加不可靠的结果,进而引发更大的问题。

究其根本原因,输出偏见是 GPT-3 在缺乏人工监督或规则的情况下不加选择地处理的结果。但是,由于整理数据需要耗费大量的人力资源,因而无法实现实际操作。这就不可避免地造成了 GPT-3 的偏见。

参考链接:https://www.theverge.com/21346343/gpt-3-explainer-openai-examples-errors-agi-potential

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/487280.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虎贲计算机二级视频解析百度云,详解虎贲T7520:5G为什么需要全场景覆盖增强技术?...

紫光展锐近期发布了采用6nm EUV工艺的新一代5G SoC“虎贲T7520”, 先进的工艺、低功耗的系统设计,大幅提升的AI算力和多媒体影像处理能力,将为5G智能体验带来更好的选择。值得注意的是,基于第二代马卡鲁5G技术平台,虎贲…

“万物就只是5万亿个参数”,AI模型GPT-3让人怀疑人生

本文转自开源中国这几天轰动硅谷的 GPT-3 是什么来头?相信不太了解 AI 的朋友这几天也或多或少看到了一些关于 GPT-3 的重磅消息,甚至有媒体称其为 “继比特币之后又一个轰动全球的现象级新技术”。请注意,现在站在你面前的是:互联…

06_jQuery_内容过滤

HTML代码&#xff1a; <div>John Resig</div><div>gggg resig</div><div>Malcom John sinclai</div><div>J.ohn</div>jQuery代码&#xff1a; $(function(){$("div:contains(John)").css("text-decoration&quo…

从技术角度探讨:深度传感器行业有哪些发展机会

来源&#xff1a;仪商网以前&#xff0c;我们一直认为传统相机将3D世界转换为2D图像&#xff0c;已可以满足我们对于图像的应用&#xff0c;而2D图像中丢失的三维似乎并不重要。但随着计算机视觉&#xff08;CV&#xff09;的飞速发展以及与深度学习的结合&#xff0c;许多雄心…

计算机二级vf上机试题,计算机二级VF上机模拟题

计算机二级VF上机模拟题一、基本操作题(共4小题&#xff0c;第1和2题是7分、第3和4题是8分)在考生文件夹下完成下列操作(在"成绩管理"数据库中完成)&#xff1a;1、为"学生"表在"学号"字段上建立升序主索引&#xff0c;索引名和索引表达式均为学…

城市大脑全球标准,构建人类协同发展类脑智能支撑平台

21世纪以来&#xff0c;种种迹象表明诞生于1969年的互联网正在从网状结构向类脑模型演化。这种演化不但导致物联网、云计算、大数据、工业互联网、边缘计算、云机器人的产生&#xff0c;同时也使得谷歌大脑、百度大脑、阿里大脑、360安全大脑、腾讯超级大脑&#xff0c;城市大脑…

一场物理界和数学界永远不能停下的争论

来源&#xff1a;算法数学俱乐部数学和物理的搞笑差别一场物理界和数学界永远不能停下的争论&#xff1a; 数学系和物理系的学生有什么差别&#xff1f;数学系的学生学数学分析、复分析、实分析、泛函分析、数值分析、线性代数、抽象代数、概率论、集合论、数论、微分几何、微分…

Nature:麻省理工人造「巨型原子」问世,量子处理和量子通信合二为一

文章来源&#xff1a;nature在量子计算中&#xff0c;交互就是一切。量子计算机的主要挑战之一&#xff0c;就是如何让稍远距离的量子比特也能交互。一项发表于《自然》上的论文有了新的进展。一直以来&#xff0c;量子计算机都是一个神秘且「高大上」的存在。中国科学院院士潘…

神经网络与推荐系统初步简介

作者&#xff1a;一人 1.深度神经网络对于任何领域都是适用的 深度神经网络&#xff08;Deep Neural Networks, DNN&#xff09;在过去的数年已经在图像分类、语音识别、自然语言处理中取得了突破性的进展。在实践中的应用已经证明了它可以作为对于一种十分有效的技术手段应用…

18个顶级人工智能平台

来源&#xff1a;机器人小妹很多时候企业拥有重复&#xff0c;乏味且困难的工作流程&#xff0c;这些流程往往会减慢生产速度并增加运营成本。为了降低生产成本&#xff0c;企业别无选择&#xff0c;只能自动化某些功能以降低生产成本。通过数字化重复性任务&#xff0c;企业可…

计算机内部程序代码,计算机为什么能够读懂程序代码?

01 引子上一回&#xff0c;我们的主人公小A初次亮相&#xff0c;凭借基础的前后端理解&#xff0c;从技术实现的层面为我们剖析了微信扫码登录的原理和机制。可能很多人因此会好奇&#xff0c;小A到底是做什么的呢&#xff1f;为什么能够弄懂这些原理呢&#xff1f;其实&#x…

符号主义对深度学习的意义浅谈

来源&#xff1a;混沌巡洋舰符号主义人工智能经历过古典时期的专家系统阶段&#xff0c; 中期的知识图谱阶段&#xff0c; 和近期深度学习和符号主义的再次联姻。那么一个很重要的问题是符号主义为什么会复兴&#xff0c;它对当下的机器学习又有何意义&#xff1f;参考阅读&…

400多家单位、30余万科研人员,10多年奋斗!北斗卫星核心器件实现100%国产!(附:北斗研发建设历程​)...

来源&#xff1a;EETOP国务院新闻办公室8月3日上午10时举行新闻发布会&#xff0c;中国卫星导航系统管理办公室主任、北斗卫星导航系统新闻发言人冉承其介绍&#xff0c;工程建设提前半年完成&#xff0c;彰显中国速度。“北斗三号2009年11月启动建设。10余年来&#xff0c;工程…

深度学习败于“捷径”

来源&#xff1a;AI科技评论深度学习的未来在哪里&#xff1f;这一话题已经有过了无数讨论&#xff0c;大部分讨论都承认当前的深度学习还不是真正的智能&#xff0c;必须转向理解、常识。但是只看当前AI成功的案例&#xff0c;似乎还无法窥探理解。近日&#xff0c;来自多伦多…

互联网是由多个计算机相互连接而成,计算机网络

第一章&#xff1a;三类网络&#xff1a;电信网络有线电视网络计算机网络互联网基本特点&#xff1a;连通性共享计算机网络的组成&#xff1a;若干结点和连接这些结点的链路组成结点分类&#xff1a;计算机集线器交换机或路由器等互联网internet&#xff1a;泛指由多个计算机网…

ftp服务器PDF文件在线查看

曾做过电厂的项目&#xff0c;有一些功能需要和甲方的厂家对接&#xff0c;其中就有需要实现甲方ftp服务器上的PDF、JPG等文件的查看功能。就PDF文件为例&#xff0c;这里使用的是pdf插件&#xff0c;需要将参数通过链接发给ftp&#xff0c;获取到PDF文件&#xff0c;并在后端处…

从MEMS专利数量分析我国MEMS传感器产业现状

来源&#xff1a;传感器专家网MEMS传感器是采用微机械加工技术制造的新型传感器&#xff0c;是MEMS系统的重要分支。MEMS传感器以其优异的性能&#xff0c;如体积小、重量轻、成本低、功耗低、灵敏度高、可批量化生产、易于集成和实现智能化等特点&#xff0c;逐步取代传统机械…

配置手工模式链路聚合示例(交换机之间直连)

组网图形 图1 配置手工模式链路聚合组网图 手工模式链路聚合简介配置注意事项组网需求配置思路操作步骤配置文件 手工模式链路聚合简介 以太网链路聚合是指将多条以太网物理链路捆绑在一起成为一条逻辑链路&#xff0c;从而实现增加链路带宽的目的。链路聚合分为手工模式和LA…

知乎热议:科学网发布文章称「我国数学家证明 NP=P」,会带来怎样的影响?

来源&#xff1a;运筹OR帷幄2020年7月出版的《计算机科学》&#xff08;中国计算机学会会刊&#xff09;发表了国防科技大学教授、湘潭大学计算机学院特聘教授姜新文题为《哈密顿图判定问题的多项式时间算法》的论文&#xff0c;这标志着在数学和计算机科学领域中最为重要的难题…

2008r2服务器频繁自动重启,解决windows server 2008 更新后不断重启现象

今天遇到一台服务器提示windows2008r2系统更新失败&#xff0c;进入启动界面时提示&#xff1a;“未正确配置更新&#xff0c;正在还原更改&#xff0c;请勿关闭计算机&#xff01;”&#xff0c;不久就再次重新启动&#xff0c;然后不断自动重复这个过程。从保护数据安全的角度…