实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。
方法一:暴力法,时间复杂度:O(n),通不过
class Solution {
public double myPow(double x, int n) {
double sum=1;
int i;
if(n>0)
{
for(i=1;i<=n;i++)
{
sum*=x;
}
}
else if(n<0)
{
n = -n;
for(i=1;i<=n;i++)
{
sum*=x;
}
sum=1/sum;
}
else
{
sum = 1;
}
return sum;
}
}
方法二:二分法
例如:次方为偶数的话,1024 = 32*32,即2^10=2^5*2^5,依次类推,2^n=2^(n/2)*2^(n/2)
次方为奇数复杂一点,2048(2^11)=32*32*2, 2^n=2^(n/2)*2^(n/2)*2
提交的代码:
class Solution {
public static double powRecursion(double x, int n) {
if (n == 0) {
return 1;
}
if ((n%2) == 0) {
return powRecursion(x * x, n / 2);
} else {
return powRecursion(x * x, n / 2) * x;
}
}
public static double myPow(double x, int n) {
double sum=1;
if(n==1)
{
return x;
}
if(n==-1)
{
return 1/x;
}
int i=0;
if(n==0)
{
return 1;
}
else if(n<0)
{
n=-n;
x = 1/x;
}
sum = powRecursion(x,n);
return sum;
}
}
完整的代码:
import java.util.Scanner;
public class Solution50 {
public static double powRecursion(double x, int n) {
if (n == 0) {
return 1;
}
if ((n%2) == 0) {
return powRecursion(x * x, n / 2);
} else {
return powRecursion(x * x, n / 2) * x;
}
}
public static double myPow(double x, int n) {
double sum=1;
if(n==1)
{
return x;
}
if(n==-1)
{
return 1/x;
}
int i=0;
if(n==0)
{
return 1;
}
else if(n<0)
{
n=-n;
x = 1/x;
}
sum = powRecursion(x,n);
return sum;
}
public static void main(String[] args)
{
double x;
int n;
Scanner sc = new Scanner(System.in);
x = sc.nextDouble();
n = sc.nextInt();
System.out.println(myPow(x,n));
}
}