2020年人工智能十大技术进展

pixabay.com

来源:知识分子  

撰文 : 全体智源学者

制版编辑:卢卡斯

编者按

编者按

2020年即将过去,今年人工智能领域有哪些重大进展?位于北京的智源人工智能研究院请 “智源学者” 们从全球的研究成果中评选了一份年度成就名单,其中有文本能力惊人的自然语言处理预训练模型GPT-3,有惊艳结构生物学领域的AlphaFold2,也有不少中国学者的成果。名单按对人工智能领域的重要性排序,会是谁拔得头筹呢?

No.10  

康奈尔大学提出无偏公平排序模型可缓解检索排名的马太效应问题

近年来,检索的公平性和基于反事实学习的检索和推荐模型已经成为信息检索领域重要的研究方向,相关的研究成果已经被广泛应用于点击数据纠偏、模型离线评价等,部分技术已经落地于阿里和华为等公司的推荐及搜索产品中。2020年7月,康奈尔大学 Thorsten Joachims 教授团队发表了公平无偏的排序学习模型FairCo,一举夺得了国际信息检索领域顶会SIGIR 2020最佳论文奖。该研究分析了当前排序模型普遍存在的位置偏差、排序公平性以及物品曝光的马太效应问题等,基于反事实学习技术提出了具有公平性约束的相关度无偏估计方法,并实现了排序性能的提升,受到了业界的广泛关注和好评。

No.9

Google与FaceBook团队分别提出全新无监督表征学习算法

2020年初,Google与Facebook分别提出SimCLR与MoCo两个算法,均能够在无标注数据上学习图像数据表征。两个算法背后的框架都是对比学习(contrastive learning)。对比学习的核心训练信号是图片的 “可区分性”。模型需要区分两个输入是来自于同一图片的不同视角,还是来自完全不同的两张图片的输入。这个任务不需要人类标注,因此可以使用大量无标签数据进行训练。尽管Google和FaceBook的两个工作对很多训练的细节问题进行了不同的处理,但它们都表明,无监督学习模型可以接近甚至达到有监督模型的效果。

No.8  

MIT仅用19个类脑神经元实现控制自动驾驶汽车

受秀丽隐杆线虫等小型动物脑的启发,来自MIT计算机科学与人工智能实验室(CSAIL)、维也纳工业大学、奥地利科技学院的团队仅用19个类脑神经元就实现了控制自动驾驶汽车,而常规的深度神经网络则需要数百万神经元。此外,这一神经网络能够模仿学习,具有扩展到仓库的自动化机器人等应用场景的潜力。这一研究成果已发表在2020年10月13日的《自然》杂志子刊《自然·机器智能》(Nature Machine Intelligence)上。

No.7

北京大学首次实现基于相变存储器的神经网络高速训练系统

2020年12月,智源学者、北京大学杨玉超团队提出并实现了一种基于相变存储器(PCM)电导随机性的神经网络高速训练系统,有效地缓解了人工神经网络训练过程中时间、能量开销巨大并难以在片上实现的问题。该系统在误差直接回传算法(DFA)的基础上进行改进,利用PCM电导的随机性自然地产生传播误差的随机权重,有效降低了系统的硬件开销以及训练过程中的时间、能量消耗。该系统在大型卷积神经网络的训练过程中表现优异,为人工神经网络在终端平台上的应用以及片上训练的实现提供了新的方向。

No.6  

清华大学首次提出类脑计算完备性概念及计算系统层次结构

2020年10月,智源学者,清华大学张悠慧、李国齐、宋森团队首次提出“类脑计算完备性” 概念以及软硬件去耦合的类脑计算系统层次结构,通过理论论证与原型实验证明该类系统的硬件完备性与编译可行性,扩展了类脑计算系统应用范围使之能支持通用计算。该研究成果发表在2020年10月14日的《自然》( Nature )期刊。《自然》周刊评论认为,“ ‘完备性’ 新概念推动了类脑计算”,对于类脑系统存在的软硬件紧耦合问题而言这是 “一个突破性方案”。

No.5

美国贝勒医学院通过动态颅内电刺激实现高效率“视皮层打印”

对于全球4000多万盲人来说,重见光明是一个遥不可及的梦想。2020年5月,美国贝勒医学院的研究者利用动态颅内电刺激新技术,用植入的微电极阵列构成视觉假体,在人类初级视皮层绘制W、S和Z等字母的形状,成功地能够让盲人 “看见” 了这些字母。结合马斯克创办的脑机接口公司Neuralink发布的高带宽、全植入式脑机接口系统,下一代视觉假体有可能精准刺激大脑初级视觉皮层的每一个神经元,帮助盲人“看见”更复杂的信息,实现他们看清世界的梦想。

No.4   

DeepMind等用深度神经网络求解薛定谔方程促进量子化学发展

作为量子力学的基本方程之一,薛定谔方程提出已经有90多年的时间,但如何精确求解薛定谔方程,却一直困扰着许多科学家。2019年,DeepMind开发出一种费米神经网络(Fermionic neural networks,简称FermiNet)来近似计算薛定谔方程,为深度学习在量子化学领域的发展奠定了基础,2020年10月,DeepMind开源了FermiNet,相关论文发表在物理学期刊 Physical Review Research 上。FermiNet是利用深度学习来从第一性原理计算原子和分子能量的尝试,在精度和准确性上都满足科研标准,且是目前在相关领域中较为精准的神经网络模型。另外,2020年9月,德国柏林自由大学的几位科学家也提出了一种新的深度学习波函数拟设方法,它可以获得电子薛定谔方程的近乎精确解,相关研究发表在 Nature Chemistry 上。该类研究所展现的,不仅是深度学习在解决某一特定科学问题过程中的应用,也是深度学习能在生物、化学、材料以及医药领域等各领域科研中被广泛应用的一个远大前景。

No.3  

深度势能分子动力学研究获得戈登·贝尔奖

2020年11月19日,在美国亚特兰大举行的国际超级计算大会SC20上,智源学者、北京应用物理与计算数学研究院王涵所在的 “深度势能” 团队,获得了国际高性能计算应用领域最高奖项 “戈登·贝尔奖”。“戈登·贝尔奖” 设立于1987年,由美国计算机协会(ACM)颁发,被誉为 “计算应用领域的诺贝尔奖”。该团队研究的 “分子动力学”,结合了分子建模、机器学习和高性能计算相关方法,能够将第一性原理精度分子动力学模拟规模扩展到1亿原子,同时计算效率相比此前人类最好水平提升1000倍以上,极大地提升了人类使用计算机模拟客观物理世界的能力。美国计算机协会(ACM)评价道,基于深度学习的分子动力学模拟通过机器学习和大规模并行的方法,将精确的物理建模带入了更大尺度的材料模拟中,将来有望为力学、化学、材料、生物乃至工程领域解决实际问题(如大分子药物开发)发挥更大作用。

No.2  

DeepMind的AlphaFold2破解蛋白质结构预测难题

2020年11月30日,Google旗下DeepMind公司的AlphaFold2人工智能系统在第14届国际蛋白质结构预测竞赛(CASP)中取得桂冠,在评估中的总体中位数得分达到了92.4分,其准确性可以与使用冷冻电子显微镜(CryoEM)、核磁共振或X射线晶体学等实验技术解析的蛋白质3D结构相媲美,有史以来首次把蛋白质结构预测任务做到了基本接近实用的水平。《自然》( Nature )杂志评论认为,AlphaFold2算法解决了困扰生物界 “50年来的大问题”。

No.1

OpenAI发布全球规模最大的预训练语言模型GPT-3

2020年5月,OpenAI发布了迄今为止全球规模最大的预训练语言模型GPT-3。GPT-3具有1750亿参数,训练所用的数据量达到45TB,训练费用超过1200万美元。对于所有任务,应用GPT-3无需进行任何梯度更新或微调,仅需要与模型文本交互为其指定任务和展示少量演示即可使其完成任务。GPT-3在许多自然语言处理数据集上均具有出色的性能,包括翻译、问答和文本填空任务,还包括一些需要即时推理或领域适应的任务等,已在很多实际任务上大幅接近人类水平。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/485800.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS 6快捷安装RabbitMQ教程

1.安装Erlang yum install erlang 2.安装RabbitMQ yum install rabbitmq-server 3.配置开机自启动 chkconfig rabbitmq-server on 4.启动RabbitMQ service rabbitmq-server start 5.查询RabbitMQ路径 whereis rabbitmq 6.进入目录 7.开启RabbitMQ的Web管理界面 ./rabbitmq-plug…

java视频压缩 lz4_关于LZMA和LZ4压缩的疑惑解析

原标题:关于LZMA和LZ4压缩的疑惑解析这是第112篇UWA技术知识分享的推送。今天我们继续为大家精选了若干和开发、优化相关的问题,建议阅读时间10分钟,认真读完必有收获。UWA QQ群:465082844(仅限技术交流)AssetBundleQ:…

微积分的发现是人类精神的最高胜利

来源 : 数学英才微积分早期的思想基础在25岁以前的伽利略就开始作了一系列实验,发现了许多有关物体在地球引力场运动的基本事实,最基本的就是自由落体定律。开普勒在1619年前后归纳为著名的行星运动三大定律。这些成就对后来的绝大部份的数学…

数据库MySQL/mariadb知识点——触发器

触发器 触发器:trigger,是指事先为某张表绑定一段代码,当表中的某些内容发生改变(增、删、改)的时候,系统会自动触发代码并执行。 触发器包含三个要素,分别为 事件类型:增删改&#…

【前沿技术】2021九大技术趋势:规模化机器学习、「零信任」架构

来源:智能研究院《德勤2021年技术趋势》报告研究了疫情一年来对企业战略、运营和技术带来的连锁反应,论述了其重大发现:全球企业正在加速数字化战略转型,从而构建「韧性」、开创全新的经营模式。报告讨论了接下来18至24个月及以后…

Java项目打包成exe的详细教程

Java项目打包成exe的详细教程 把Java项目打包成exe共分为以下两步: 1、 利用Eclipse先把Java项目先打成jar包 2、 利用exe4j工具把jar包转成exe 这里以Java项目(ExeDemo)为例进行讲解 随便在一个位置新建一个文件夹,文件夹的名称也…

数学史上的哲学绝唱——无穷观与数学基础的争论

来源:《广西民族大学学报》2014年11月作者:郭龙先,黄永两千多年来,数学家们一直试图从少数公理出发,根据明确给出的演绎规则推导出其他数学定理,从而把整个数学构造成为一个严密的演绎大厦,然后…

Leetcode--141. 环形链表

给定一个链表,判断链表中是否有环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。 示例 1: 输入:head …

解读自动驾驶的2020:从硬件角度看,无人车商业化落地难在哪?

来源 :AI前线作者 :滴滴自动驾驶技术团队策划 :陈思「重点问题」什么是合适的无人驾驶车辆平台?复杂场景下的“无人驾驶”,传感器硬件系统还有哪些挑战?告别 demo 硬件系统后,下一个前装量产的必…

Leetcode--142. 环形链表Ⅱ

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有…

他们提出了一个大胆的猜想:GWT(深度学习)→通用人工智能

来源:AI科技评论编译 :陈彩娴近日,有一篇发表在arXiv的论文“Deep Learning and the Global Workspace Theory”提出了一个大胆的猜想(或理论)。两位作者认为,当下的深度学习已经可以基于一个意识模型&…

科学史上那些盛极一时的“著名理论”是如何被攻破的?

《雅典学院》名画中的亚里士多德和柏拉图来源 :《自然》百年科学经典制版编辑: Morgan在科学发展的过程中,曾经涌现出不少盛极一时而后被证明是错误的理论。这些理论有的也许在今天看来悖谬荒诞,但是从整个科学发展的过程来看,它们仍然有其作…

AI在智能建筑中的应用和发展

来源:中研网图片来源:网络智能建筑诞生于二十世纪末,第一幢智能建筑于1984年在美国哈特福德 (Hartford)市建成。我国于90年代才起步,但迅猛发展势头令世人瞩目。目前,新技术、新产品在智能建筑中…

SpringBoot核心

1.基本配置 1.1入口类和SrpingBootApplication SpringBoot通常有一个名为*Application的入口类,入口类里有一个main方法,这个main方法就是一个标准的java应用的入口方法 。在main方法中使用SpringApplication.run,启动springboot项目。 其中EnablieAutoC…

grpc简单使用 java_gRPC学习记录(四)-官方Demo - Java 技术驿站-Java 技术驿站

了解proto3后,接下来看官方Demo作为训练,这里建议看一遍之后自己动手搭建出来,一方面巩固之前的知识,一方面是对整个流程更加熟悉.官方Demo地址: https://github.com/grpc/grpc-java例子是一个简单的路由映射的应用,它允许客户端获取路由特性的信息,生成…

冯端:漫谈物理学的过去、现在与未来

来源: 算法与数学之美撰文: 冯端 (南京大学物理系)“物理学的过去、现在和未来”是一个非常大而且重要的题目,也是一个非常难讲的题目,特别是涉及物理学的未来,结果往往是贻笑大方。这里以历史的透视为主线&#xff0c…

第四次博客

第四次博客 一、测试与正确性论证的比较 测试具有针对性,能从一些方面完美的展现出代码的正确性,但是它的验证度取决于样例的质量。 优点是方便,快捷,结果明显;缺点是可能不会覆盖到方方面面。 正确性论证能从所有的方…

院士论坛|李德仁:测绘遥感能为智能驾驶做什么? ——论测绘遥感与智能驾驶

来源: 中国测绘学会未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业…

Spring Boot-springbootHelloword(一)

什么是springboot sprng家族一个全新的框架 简化我们应用程序的创建和开发的过程,使用默认配置简化了我们以前传统的配置 springboot的特性 能够快速创建spring程序能够使用java main方法启动内嵌的 tomcat 或者jetty服务器运行spring boot程序提供约定的starter p…

原创工作发表难之叶公好龙

来源:张志东科学网博客链接地址:http://blog.sciencenet.cn/blog-2344-1265601.html 最近,科学网上一个热点话题是原创工作发表难不难?以真傻为代表的认为原创工作发表难,以王立新为代表的认为原创工作发表不难。那么&…