来源:AI前线
作者:Debanjan Saha
译者:平川
策划:钰莹
预测是充满挑战的,因为具体的预测取决于特定的时间框。但从云应用方面表现出的趋势来说,我们 2020 年看到的一些事情可能预示着 2021 年可能出现的变化。
经历过互联网革命的网络工程师们或许可以看到另一场革命的迹象:围绕云和数据而产生的变革。根据这种迹象采取行动,很可能就是颠覆者和被颠覆者的区别。
以下是我一路走来所看到的,以及我们在进入新的一年时需要牢记的重要事项。
1. 云计算的下一个阶段关乎转型收益(不仅仅是成本)
2021 年,云模型将开始包含数据治理架构,并在整个组织中加速采用分析和人工智能。过去,我们已经看到了显著的变化,推动了大规模的云采用运动。第一波云迁移是由应用即服务驱动的,它为企业提供了工具,帮助企业更快、更安全地开发特定的应用程序,例如 CRM。然后,在第二阶段,我们见证了许多公司从物理数据中心维护转向对基础设施进行现代化。
这些对企业而言都是有益的,但当这一切在 2020 年发生之后,第三个阶段——数字化转型——将正式到来。当数字化转型发生时,我们将开始看到真正的业务转型所带来的收益。积极的成果包括将数据分析和 AI/ML 融入日常业务流程,对每个行业和整个社会都产生深远的影响。
2. 合规性不只是一个附加条款
现代云模型必须能够经受住关于数据主权和可访问性问题的审查。它将改变企业的经营方式和社会的运转方式。即使是大型的传统企业也在转向云计算来处理紧急需求,比如加强监管。现在,对于企业来说,忽视安全和隐私的风险太高了。
云(特别是谷歌云)对于实现更好的数据分析至关重要,其中一个很大的原因就和这些遵从性及治理问题有关。在世界各地,对于各种规模的企业来说,安全、隐私和数据主权 越来越受到关注。2021 年,我们将看到,很多数字化转型都是事出必然,但是今天的云技术使其成为可能。谷歌云是基于这些基本需求建立起来的一个平台,因此,企业可以在数据保护得到保障的情况下过渡到云。
3. 开放式基础设施将成主流
到 2021 年,我们将看到,80% 或更多的企业采用多云或混合 IT 战略。云上的客户希望为他们的工作负载提供多个可选项。开放式基础设施和开放式 API 是发展方向,你应该接受开放的哲学。没有企业能够承担起将有价值的数据锁定在特定供应商或服务中的代价。
这种新兴的开放式标准意味着,你将开始看到多云数据源和本地数据源迅速地融合在一起。有了合适的工具,组织就可以同时使用多个云服务,让他们可以从不同的云中获得不同的好处,就好像它们是一个基础设施一样。我们看到,向开放性和云计算的巨大转变,也带来了更强大的数据资产和更好的数据分析。如果在过去的一年里,你对公司存在多少数据源或收集了多少数据感到惊讶,你并不孤单。开放式基础设施让你可以选择最适合自己业务的上云路径。
像 Looker 和 BigQuery Omni 这样的数据解决方案就是专门针对我们的开放式平台所提供的开放式 API 环境而设计的,是为了在面对不断变化的数据源时可以保持领先优势。
4. 不需要数据科学学位就可以利用 AI/ML 的能力
数据科学,包括所有通常会涉及到的专业知识和专门工具,不再是少数特权人士的特权。整个组织中的团队都需要能够利用数据科学的能力,包括 ML 建模和人工智能等,而不需要学习一门全新的学科。对于这些团队中的许多人来说,这将给他们的工作和需要做出的决定带来新的活力。如果他们还没有消费数据,那么他们就会开始。
有了这种能力,整个团队都能获得分析数据的能力,与那些仍在使用传统离散式数据科学模型的企业相比,你的企业将能够更快地收集、分析数据并采取行动。通过向员工提供收集、分类和按需共享数据的工具,提高他们的生产率,帮助他们做出更明智的决策。这还解放了拥有数据科学经验的团队,他们通常需要聚合、分析和创建演示文稿,专注于更适合其能力的任务以及培训。
有了谷歌云的基础设施和我们的数据和 AI/ML 解决方案,将数据上云并开始分析就很容易了。像 Connected Sheets、Data QnA 和 Looker 这样的工具让所有员工都能进行数据分析,不管他们是认证数据分析师还是科学家。
5. 世界上需要实时处理的企业数据越来越多
我们很快就会发现,驻留在云中的数据超过了驻留在数据中心里的数据。到 2025 年,全球数据预计将增长 61%,达到 175ZB。大量的数据,为企业提供了挖掘机会。挑战在于获取当下有用的数据。跟踪过去存储的数据可以获得信息,但是越来越多的用例需要即时信息,特别是在对意外事件做出响应时。例如,利用实时数据和实时响应,立即识别并阻止对企业有巨大影响的网络安全漏洞。与解决漏洞相比,这可以节省大量的时间和金钱。
我们用同样的方法帮助客户克服 DDOS 攻击,如果说 2020 年教会了我们什么的话,那就是企业将比以往任何时候都更需要这种能力来实时应对意想不到的问题。
尽管实时数据彻底改变了我们收集数据的速度,但我们所见过的最出乎意料但又极其有用的数据来源可能是预测分析。传统上,数据只从物理世界收集,也就是说,要对将要发生的事情进行计划,唯一的方法是看看在物理上可以测试什么。但是有了预测模型和像 BigQuery ML 这样的 AI/ML 工具,组织可以基于现实生活场景和信息进行模拟,为他们提供形势数据,而这在物理环境中是很难甚至是不可测试的,而且成本高昂。
6. 超过 50% 的数据湖将跨越多个云和本地数据中心
我们知道,将恰当的服务匹配到恰当的用例是很复杂的。尽管云提供了大量更好的数据选项,但事实是,如此多的企业正在转向这些云解决方案,这意味着组织需要一个强有力的数字化战略来保持竞争力,这也延伸到了它们的数据存储。许多企业都出于灵活性考虑选择了多云,尤其是在有这么多选项可用的情况下。在云中,数据存储的形式要么是数据仓库(主要存储结构化数据,易于搜索),要么是 数据湖(将所有业务数据聚集在一起,而不管数据结构如何)。
我们将看到 更多我们已经看到的趋势,首先是数据湖和数据仓库之间的界限变得越来越模糊。谷歌云拥有多种 数据湖现代化解决方案,使组织能够集成非结构化数据,并使用 AI/ML 解决方案简化数据湖导航,推动洞察和协作。
英文原文:
https://cloud.google.com/blog/products/data-analytics/what-to-expect-from-cloud-data-analytics-in-2021
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”