计算机视觉 -- 图像分割

文章目录

  • 1. 图像分割
  • 2. FCN
    • 2.1 语义分割– FCN (Fully Convolutional Networks)
    • 2.2 FCN--deconv
    • 2.3 Unpool
    • 2.4 拓展–DeconvNet
  • 3. 实例分割
    • 3.1 实例分割--Mask R-CNN
    • 3.2 Mask R-CNN
    • 3.3 Faster R-CNN与 Mask R-CNN
    • 3.4 Mask R-CNN:Resnet101
    • 3.5 特征金字塔-Feature Pyramid Networks(FPN)
    • 3.6 Mask R-CNN:FPN
    • 3.7 Faster-RCNN:Roi pooling
    • 3.8 Mask R-CNN:Roi-Align
    • 3.9 Mask R-CNN:分割掩膜
    • 3.10 Mask R-CNN—总结
    • 3.11 Mask R-CNN:COCO数据集
  • 4. 视频结构化
  • 5. 代码示例
    • 5.1 nets
    • 5.2 mask_rcnn.py
    • 5.3 train.py
    • 5.4 predict.py

1. 图像分割

引入问题:
在自动驾驶系统中,如果用之前的检测网络(例如Faster-Rcnn),试想,倘若前方有一处急转弯,系统只在道路上给出一个矩形标识,这样一来车辆很有可能判断不出是该避让还是径直上前,车祸一触即发。因此,对新技术的诉求应运而生,该技术须能识别具体路况,以指引车辆顺利过弯。
在这里插入图片描述

图像分割即为图片的每个对象创建一个像素级的掩膜,该技术可使大家对图像中的对象有更深入的了解。
在这里插入图片描述

图像分割可分为两种:语义分割与实例分割。

  • 左图五个对象均为人,因此语义分割会将这五个对象视为一个整体。
  • 右图同样也有五个对象(亦均为人),但同一类别的不同对象在此被视为不同的实例,这就是实例分割。

在这里插入图片描述

图像分类,语义分割,目标检测,实例分割
在这里插入图片描述

2. FCN

2.1 语义分割– FCN (Fully Convolutional Networks)

全卷积神经网络,顾名思义,该网络中没有全连接层,都是一些卷卷积的结构
FCN最主要的一个用法就是用于语义分割

在这里插入图片描述

我们分类使用的网络通常会在最后连接几层全连接层,它会将原来二维的矩阵(图片)压扁成一维的,从而丢失了空间信息,最后训练输出一个标量,这就是我们的分类标签。

FCN网络和一般的网络的最大不同是,FCN产生的输出和输入的维度保持一致,即改变原本的CNN网络末端的全连接层,将其调整为卷积层,这样原本的分类网络最终输出一个热度图类型的图像。
在这里插入图片描述

一句话概括原理:
FCN将传统卷积网络后面的全连接层换成了卷积层,这样网络输出不再是类别而是heatmap;同时为了解决因为卷积和池化对图像尺寸的影响,提出使用上采样的方式恢复尺寸。

核心思想:

  • 不含全连接层(fc)的全卷积(fully conv)网络。可适应任意尺寸输入。
  • 增大数据尺寸的反卷积(deconv)层。能够输出精细的结果。

FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。

FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。

最后逐个像素计算softmax分类的损失, 相当于每一个像素对应一个训练样本。

对全卷积网络的末端再进行upsampling(上采样),即可得到和原图大小一样的输出,这就是热度图了。这里上采样采用了deconvolutional(反卷积)的方法。

反卷积/转置卷积:它并不是正向卷积的完全逆过程。反卷积是一种特殊的正向卷积,先按照一定的比例通过补0来扩大输入图像的尺寸,接着旋转卷积核,再进行正向卷积。

大家可能对于反卷积的认识有一个误区,以为通过反卷积就可以获取到经过卷积之前的图片, 实际上通过反卷积操作并不能还原出卷积之前的图片, 只能还原出卷积之前图片的尺寸。

卷积和反卷积,并没有什么关系,操作的过程 也都是不可逆的。

2.2 FCN–deconv

反卷积用在什么地方?

  1. 反卷积/转置卷积在语义分割领域应用很广,如果说pooling层用于特征降维,那么在多个pooling层后,就需要用转置卷积来进行分辨率的恢复。
  2. 如果up-sampling采用双线性插值进行分辨率的提升,这种提升是非学习的。采用反卷积来完成上采样的工作,就可以通过学习的方式得到更高的精度

在这里插入图片描述

反卷积具体步骤:

  1. 将上一层的卷积核反转(上下左右方向进行反转)。
  2. 将上一层卷积的结果作为输入,做补0扩充操作,即往每一个元素后面补0。这一步是根据步长来的,对于每个元素沿着步长方向补(步长-1)个0。例如,步长为1就不用补0了。
  3. 在扩充后的输入基础上再对整体补0。以原始输入的shape作为输出shape,按照卷积padding规则,计算pading的补0的位置及个数,得到补0的位置及个数。
  4. 将补0后的卷积结果作为真正的输入,反转后的卷积核为filter,进行步长为1的卷积操作。

注意:计算padding按规则补0时,统一按照padding=‘SAME’、步长为1*1的方式来计算

在这里插入图片描述

卷积:
在这里插入图片描述

反卷积:
在这里插入图片描述

反卷积的缺点:

  1. 卷积矩阵是稀疏的(有大量的0),因此大量的信息是无用的;
  2. 求卷积矩阵的转置矩阵是非常耗费计算资源的。

2.3 Unpool

池化操作中最常见的最大池化和平均池化,因此最常见的反池化操作有反最大池化和反平均池化。反最大池化需要记录池化时最大值的位置,反平均池化不需要此过程。
在这里插入图片描述

2.4 拓展–DeconvNet

这样的对称结构有种自编码器的感觉在里面,先编码再解码。
在这里插入图片描述

3. 实例分割

在这里插入图片描述

实例分割(instance segmentation)的难点在于:需要同时检测出目标的位置并且对目标进行分割,所以这就需要融合目标检测(框出目标的位置)以及语义分割(对像素进行分类,分割出目标)方法。

3.1 实例分割–Mask R-CNN

Mask R-CNN可算作是Faster R-CNN的升级版。
Faster R-CNN广泛用于目标检测。对于给定图像,它会给图中每个对象加上类别标签与边界框坐标。
Mask R-CNN框架是以Faster R-CNN为基础而架构的。因此,针对给定图像, Mask R-CNN不仅会给每个对象添加类标签与边界框坐标,还会返回其对象掩膜。

在这里插入图片描述

Mask R-CNN的抽象架构:
在这里插入图片描述

3.2 Mask R-CNN

Mask R-CNN在进行目标检测的同时进行实例分割,取得了出色的效果
在这里插入图片描述

3.3 Faster R-CNN与 Mask R-CNN

Mask-RCNN 大体框架还是 Faster-RCNN 的框架,可以说在基础特征网络之后又加入了全连接的分割子网,由原来的两个任务(分类+回归)变为了三个任务(分类+回归+分割)。Mask R-CNN 是一个两阶段的框架,第一个阶段扫描图像并生成候选区域(proposals,即有可能包含一个目标的区域),第二阶段分类候选区域并生成边界框和掩码。

与Faster RCNN的区别:

  1. 使用ResNet网络作为backbone
  2. 将 Roi Pooling 层替换成了 RoiAlign;
  3. 添加并列的 Mask 层;
  4. 引入FPN 和 FCN

在这里插入图片描述

  1. 输入一幅你想处理的图片,然后进行对应的预处理操作,获得预处理后的图片;
  2. 将其输入到一个预训练好的神经网络中(ResNet等)获得对应的feature map;
  3. 对这个feature map中的每一点设定预定个的ROI,从而获得多个候选ROI;
  4. 将这些候选的ROI送入RPN网络进行二值分类(positive或negative)和BB回归,过滤掉一部分候选的ROI(截止到目前,Mask和Faster完全相同);
  5. 对这些剩下的ROI进行ROIAlign操作(ROIAlign为Mask R-CNN创新点1,比ROIPooling有长足进步);
  6. 最后,对这些ROI进行分类(N类别分类)、BB回归和MASK生成(在每一个ROI里面进行FCN操作)(引入FCN生成Mask是创新点2,使得此网络可以进行分割型任务)。
  • backbone:Mask-RCNN使用 Resnet101作为主干特征提取网络, 对应着图像中的CNN部分。(当然也可以使用别的CNN网络)
  • 在进行特征提取后,利用长宽压缩了两次、三次、四次、五次的特征层来进行特征金字塔结构的构造。

在这里插入图片描述

3.4 Mask R-CNN:Resnet101

Resnet 中 Conv Block和Identity Block的结构:
其中Conv Block输入和输出的维度是不一样的,所以不能连续串联,它的作用是改变网络的维度;Identity Block输入维度和输出维度相同,可以串联,用于加深网络
在这里插入图片描述

3.5 特征金字塔-Feature Pyramid Networks(FPN)

  • 目标检测任务和语义分割任务里面常常需要检测小目标。但是当小目标比较小时,可能在原图里面只有几十个像素点。
  • 对于深度卷积网络,从一个特征层卷积到另一个特征层,无论步长是1还是2还是更多,卷积核都要遍布整个图片进行卷积,大的目标所占的像素点比小目标多,所以大的目标被经过卷积核的次数远比小的目标多,所以在下一个特征层里,会更多的反应大目标的特点。
  • 特别是在步长大于等于2的情况下,大目标的特点更容易得到保留,小目标的特征点容易被跳过。
  • 因此,经过很多层的卷积之后,小目标的特点会越来越少。

在这里插入图片描述

特征图(feature map)用蓝色轮廓表示, 较粗的轮廓表示语义上更强的特征图。
a. 使用图像金字塔构建特征金字塔。 特征是根据每个不同大小比例的图像独立计算的,每计算一次特征都需要resize一下图片大小,耗时,速度很慢。
b. 检测系统都在采用的为了更快地检测而使用的单尺度特征检测。
c. 由卷积计算的金字塔特征层次来进行目标位置预测,但底层feature map特征表达能力不足。
d. 特征金字塔网络(FPN)和b,c一样快, 但更准确。

FPN的提出是为了实现更好的feature maps融合,一般的网络都是直接使用最后一层的feature maps,虽然最后一层的 feature maps 语义强,但是位置和分辨率都比较低,容易 检测不到比较小的物体。FPN的功能就是融合了底层到高层 的feature maps ,从而充分的利用了提取到的各个阶段的特征(ResNet中的C2-C5)。

3.6 Mask R-CNN:FPN

特征金字塔FPN的构建
在这里插入图片描述

  • 特征金字塔FPN的构建是为了实现特征多尺度的融合,在Mask R-CNN当中,我们取出在主干特征提取网络中长宽压缩了两次 C2、三次C3、四次C4、五次C5的结果来进行特征金字塔结构的构造。
  • P2-P5是将来用于预测物体的bbox,box- regression,mask的。
  • P2-P6是用于训练RPN的,即P6只用于RPN 网络中。

3.7 Faster-RCNN:Roi pooling

为何需要RoI Pooling?
对于传统的CNN(如AlexNet和VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。
有2种解决办法:

  1. 从图像中crop一部分传入网络将图像(破坏了图像的完整结构)
  2. warp成需要的大小后传入网络(破坏了图像原始形状信息)

在这里插入图片描述

RoI Pooling原理
新参数pooled_w、pooled_h和spatial_scale(1/16)

RoI Pooling layer forward过程:

  1. 由于proposal是对应MN尺度的,所以首先使用spatial_scale参数将其映射回(M/16)(N/16)大小的feature map尺度;
  2. 再将每个proposal对应的feature map区域水平分为poold_w * pooled_h的网格;
  3. 对网格的每一份都进行max pooling处理。

这样处理后,即使大小不同的proposal输出结果都是poold_w * pooled_h固定大小,实现了固定长度输出。

再将每个proposal对应的feature map区 域水平分为poold_w * pooled_h的网格;

对网格的每一份都进行max pooling处理

这样处理后,即使大小不同的proposal输 出结果都是poold_w * pooled_h固定大小, 实现了固定长度输出。
在这里插入图片描述

3.8 Mask R-CNN:Roi-Align

Roi-Align
Mask-RCNN中提出了一个新的思想就是RoIAlign,其实RoIAlign就是在RoI pooling上稍微改动过来的,但是为什么在模型中不继续使用RoI pooling呢?
在这里插入图片描述

在RoI pooling中出现了两次的取整,虽然在feature maps上取整看起来只是小数级别的数,但是当把feature map还原到原图上时就会出现很大的偏差,比如第一次的取整是舍去了0.78 (665/32=20.78),还原到原图时是20*32=640,第一次取整就存在了25个像素点的偏差,在第二次的取整后的偏差更加的大。对于分类和物体检测来说可能这不是一个很大的误差,但是对于实例分割而言,这是一个非常大的偏差,因为mask出现没对齐的话在视觉上是很明显的。而RoIAlign的提出就是为了解决这个不对齐问题。

在这里插入图片描述

RoIAlign的思想其实很简单,就是取消了取整的这种粗暴做法,而是通过双线性插值来得到固定四个点坐标的像素值,从而使得不连续的操作变得连续起来,返回到原图的时候误差也就更加的小。

它充分的利用了原图中虚拟点(比如20.56这个浮点数。像素位置都是整数值,没有浮点值)四周的四个真实存在的像素值来共同决定目标图中的一个像素值,即可以将20.56这个虚拟的位置点对应的像素值估计出来。

在这里插入图片描述

  • 蓝色的虚线框表示卷积后获得的feature map,黑色实线框表示ROI feature。
  • 最后需要输出的大小是2x2,那么我们就利用双线性插值来估计这些蓝点(虚拟坐标点,又称双线性插值的网格点)处所对应的像素值,最后得到相应的输出。
  • 然后在每一个橘红色的区域里面进行max pooling或者average pooling操作,获得最终2x2的输出结果。我们的整个过程中没有用到量化操作,没有引入误差,即原图中的像素和feature map中的像素是完全对齐的,没有偏差,这不仅会提高检测的精度,同时也会有利于实例分割。

3.9 Mask R-CNN:分割掩膜

获得感兴趣区域(ROI)后,给已有框架加上一个掩膜分支,每个囊括特定对象的区域都会被赋予一个掩膜。每个区域都会被赋予一个m X m掩膜,并按比例放大以便推断。
在这里插入图片描述

mask语义分割信息的获取
在之前的步骤中,我们获得了预测框,我们把这个预测框作为mask模型的区域截取部分,利用这个预测框对mask模型中用到的公用特征层进行截取。

截取后,利用mask模型再对像素点进行分类,获得语义分割结果。

mask分支采用FCN对每个RoI产生一个Kmm的输出,即K个分辨率为m*m的二值的掩膜,K为分类物体的种类数目。

Kmm二值mask结构解释:最终的FCN输出一个K层的mask,每一层为一类。用0.5作为阈值进行二值化,产生背景和前景的分割Mask。

在这里插入图片描述

对于预测的二值掩膜输出,我们对每个像素点应用sigmoid函数(或softmax等),整体损失定义为交叉熵。引入预测K个输出的机制,允许每个类都生成独立的掩膜,避免类间竞争。这样做解耦了掩膜和种类预测。

在这里插入图片描述

Mask R-CNN的损失函数为:
在这里插入图片描述

Lmask 使得网络能够输出每一类的 mask,且不会有不同类别 mask 间的竞争:

  • 分类网络分支预测 object 类别标签,以选择输出 mask。对每一个ROI,如果检测得到的ROI属于哪一个分类,就只使用哪一个分支的交叉熵误差作为误差值进行计算。
  • 举例说明:分类有3类(猫,狗,人),检测得到当前ROI属于“人”这一类,那么所使用的Lmask为 “人”这一分支的mask,即每个class类别对应一个mask可以有效避免类间竞争(其他class不贡献Loss)
  • 对每一个像素应用sigmoid,然后取RoI上所有像素的交叉熵的平均值作为Lmask。

最后网络输出为1414或者2828大小的mask,如何与原图目标对应?
需要一个后处理,将模型预测的mask通过resize得到与proposal中目标相同大小的mask。

在这里插入图片描述

3.10 Mask R-CNN—总结

主要改进点:

  1. 基础网络的增强,ResNet-101+FPN的组合可以说是现在特征学习的王牌了;
  2. 分割 loss 的改进, 二值交叉熵会使得每一类的 mask 不相互竞争,而不是和其他类别的 mask 比较
  3. ROIAlign解决不对齐的问题,就是对 feature map 的插值。直接的ROIPooling的那种量化操作会使得得到的mask与实际物体位置有一个微小偏移,是工程上更好的实现方式。

3.11 Mask R-CNN:COCO数据集

MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的 Microsoft COCO数据集,与ImageNet竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。

COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取图像中的目标,通过精确的segmentation 进行位置的标定。

包括:

  1. 对象分割;
  2. 在上下文中可识别;
  3. 超像素分割;
  4. 330K图像(> 200K标记);
  5. 150万个对象实例;
  6. 80个对象类别;
  7. 91个类别;
  8. 每张图片5个字幕;
  9. 有关键点的250,000人;

4. 视频结构化

视频结构化:
原始的视频图像实际上是一种非结构化的数据,它不能直接被计算机读取和识别,为了 让视频图像在安防等领域更好的应用,就必须使用智能视频分析技术对视频图像进行结构化处理,也就是视频结构化。

视频结构化,即视频数据的结构化处理,就是通过对原始视频进行智能分析,提取出关键信息

一段视频里面,需要提取的关键信息有哪些?
主要是有两类:

  1. 第一类是运动目标的识别,也就是画面中运动对象的识别,是人还是车;
  2. 第二类是运动目标特征的识别,也就是画面中运动的人、车、物有什么特征;

5. 代码示例

5.1 nets

layers.py

import tensorflow as tf
from keras.engine import Layer
import numpy as np
from utils import utils#----------------------------------------------------------#
#   Proposal Layer
#   该部分代码用于将先验框转化成建议框
#----------------------------------------------------------#def apply_box_deltas_graph(boxes, deltas):# 计算先验框的中心和宽高height = boxes[:, 2] - boxes[:, 0]width = boxes[:, 3] - boxes[:, 1]center_y = boxes[:, 0] + 0.5 * heightcenter_x = boxes[:, 1] + 0.5 * width# 计算出调整后的先验框的中心和宽高center_y += deltas[:, 0] * heightcenter_x += deltas[:, 1] * widthheight *= tf.exp(deltas[:, 2])width *= tf.exp(deltas[:, 3])# 计算左上角和右下角的点的坐标y1 = center_y - 0.5 * heightx1 = center_x - 0.5 * widthy2 = y1 + heightx2 = x1 + widthresult = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")return resultdef clip_boxes_graph(boxes, window):"""boxes: [N, (y1, x1, y2, x2)]window: [4] in the form y1, x1, y2, x2"""# Splitwy1, wx1, wy2, wx2 = tf.split(window, 4)y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)# Clipy1 = tf.maximum(tf.minimum(y1, wy2), wy1)x1 = tf.maximum(tf.minimum(x1, wx2), wx1)y2 = tf.maximum(tf.minimum(y2, wy2), wy1)x2 = tf.maximum(tf.minimum(x2, wx2), wx1)clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")clipped.set_shape((clipped.shape[0], 4))return clippedclass ProposalLayer(Layer):def __init__(self, proposal_count, nms_threshold, config=None, **kwargs):super(ProposalLayer, self).__init__(**kwargs)self.config = configself.proposal_count = proposal_countself.nms_threshold = nms_threshold# [rpn_class, rpn_bbox, anchors]def call(self, inputs):# 代表这个先验框内部是否有物体[batch, num_rois, 1]scores = inputs[0][:, :, 1]# 代表这个先验框的调整参数[batch, num_rois, 4]deltas = inputs[1]# [0.1 0.1 0.2 0.2],改变数量级deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])# Anchorsanchors = inputs[2]# 筛选出得分前6000个的框pre_nms_limit = tf.minimum(self.config.PRE_NMS_LIMIT, tf.shape(anchors)[1])# 获得这些框的索引ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True,name="top_anchors").indices# 获得这些框的得分scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),self.config.IMAGES_PER_GPU)# 获得这些框的调整参数deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),self.config.IMAGES_PER_GPU)# 获得这些框对应的先验框pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x),self.config.IMAGES_PER_GPU,names=["pre_nms_anchors"])# [batch, N, (y1, x1, y2, x2)]# 对先验框进行解码boxes = utils.batch_slice([pre_nms_anchors, deltas],lambda x, y: apply_box_deltas_graph(x, y),self.config.IMAGES_PER_GPU,names=["refined_anchors"])# [batch, N, (y1, x1, y2, x2)]# 防止超出图片范围window = np.array([0, 0, 1, 1], dtype=np.float32)boxes = utils.batch_slice(boxes,lambda x: clip_boxes_graph(x, window),self.config.IMAGES_PER_GPU,names=["refined_anchors_clipped"])# 非极大抑制def nms(boxes, scores):indices = tf.image.non_max_suppression(boxes, scores, self.proposal_count,self.nms_threshold, name="rpn_non_max_suppression")proposals = tf.gather(boxes, indices)# 如果数量达不到设置的建议框数量的话# 就paddingpadding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0)proposals = tf.pad(proposals, [(0, padding), (0, 0)])return proposalsproposals = utils.batch_slice([boxes, scores], nms,self.config.IMAGES_PER_GPU)return proposalsdef compute_output_shape(self, input_shape):return (None, self.proposal_count, 4)#----------------------------------------------------------#
#   ROIAlign Layer
#   利用建议框在特征层上截取内容
#----------------------------------------------------------#def log2_graph(x):return tf.log(x) / tf.log(2.0)def parse_image_meta_graph(meta):"""将meta里面的参数进行分割"""image_id = meta[:, 0]original_image_shape = meta[:, 1:4]image_shape = meta[:, 4:7]window = meta[:, 7:11]  # (y1, x1, y2, x2) window of image in in pixelsscale = meta[:, 11]active_class_ids = meta[:, 12:]return {"image_id": image_id,"original_image_shape": original_image_shape,"image_shape": image_shape,"window": window,"scale": scale,"active_class_ids": active_class_ids,}class PyramidROIAlign(Layer):def __init__(self, pool_shape, **kwargs):super(PyramidROIAlign, self).__init__(**kwargs)self.pool_shape = tuple(pool_shape)def call(self, inputs):# 建议框的位置boxes = inputs[0]# image_meta包含了一些必要的图片信息image_meta = inputs[1]# 取出所有的特征层[batch, height, width, channels]feature_maps = inputs[2:]y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)h = y2 - y1w = x2 - x1# 获得输入进来的图像的大小image_shape = parse_image_meta_graph(image_meta)['image_shape'][0]# 通过建议框的大小找到这个建议框属于哪个特征层image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32)roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))roi_level = tf.minimum(5, tf.maximum(2, 4 + tf.cast(tf.round(roi_level), tf.int32)))# batch_size, box_numroi_level = tf.squeeze(roi_level, 2)# Loop through levels and apply ROI pooling to each. P2 to P5.pooled = []box_to_level = []# 分别在P2-P5中进行截取for i, level in enumerate(range(2, 6)):# 找到每个特征层对应boxix = tf.where(tf.equal(roi_level, level))level_boxes = tf.gather_nd(boxes, ix)box_to_level.append(ix)# 获得这些box所属的图片box_indices = tf.cast(ix[:, 0], tf.int32)# 停止梯度下降level_boxes = tf.stop_gradient(level_boxes)box_indices = tf.stop_gradient(box_indices)# Result: [batch * num_boxes, pool_height, pool_width, channels]pooled.append(tf.image.crop_and_resize(feature_maps[i], level_boxes, box_indices, self.pool_shape,method="bilinear"))pooled = tf.concat(pooled, axis=0)# 将顺序和所属的图片进行堆叠box_to_level = tf.concat(box_to_level, axis=0)box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],axis=1)# box_to_level[:, 0]表示第几张图# box_to_level[:, 1]表示第几张图里的第几个框sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]# 进行排序,将同一张图里的某一些聚集在一起ix = tf.nn.top_k(sorting_tensor, k=tf.shape(box_to_level)[0]).indices[::-1]# 按顺序获得图片的索引ix = tf.gather(box_to_level[:, 2], ix)pooled = tf.gather(pooled, ix)# 重新reshape为原来的格式# 也就是# Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels]shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0)pooled = tf.reshape(pooled, shape)return pooleddef compute_output_shape(self, input_shape):return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], )#----------------------------------------------------------#
#   Detection Layer
#   
#----------------------------------------------------------#def refine_detections_graph(rois, probs, deltas, window, config):"""细化分类建议并过滤重叠部分并返回最终结果探测。Inputs:rois: [N, (y1, x1, y2, x2)] in normalized coordinatesprobs: [N, num_classes]. Class probabilities.deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specificbounding box deltas.window: (y1, x1, y2, x2) in normalized coordinates. The part of the imagethat contains the image excluding the padding.Returns detections shaped: [num_detections, (y1, x1, y2, x2, class_id, score)] wherecoordinates are normalized."""# 找到得分最高的类class_ids = tf.argmax(probs, axis=1, output_type=tf.int32)# 序号+类indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1)# 取出成绩class_scores = tf.gather_nd(probs, indices)# 还有框的调整参数deltas_specific = tf.gather_nd(deltas, indices)# 进行解码# Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinatesrefined_rois = apply_box_deltas_graph(rois, deltas_specific * config.BBOX_STD_DEV)# 防止超出0-1refined_rois = clip_boxes_graph(refined_rois, window)# 去除背景keep = tf.where(class_ids > 0)[:, 0]# 去除背景和得分小的区域if config.DETECTION_MIN_CONFIDENCE:conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0]keep = tf.sets.set_intersection(tf.expand_dims(keep, 0),tf.expand_dims(conf_keep, 0))keep = tf.sparse_tensor_to_dense(keep)[0]# 获得除去背景并且得分较高的框还有种类与得分# 1. Prepare variablespre_nms_class_ids = tf.gather(class_ids, keep)pre_nms_scores = tf.gather(class_scores, keep)pre_nms_rois = tf.gather(refined_rois,   keep)unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0]def nms_keep_map(class_id):ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0]class_keep = tf.image.non_max_suppression(tf.gather(pre_nms_rois, ixs),tf.gather(pre_nms_scores, ixs),max_output_size=config.DETECTION_MAX_INSTANCES,iou_threshold=config.DETECTION_NMS_THRESHOLD)class_keep = tf.gather(keep, tf.gather(ixs, class_keep))gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0]class_keep = tf.pad(class_keep, [(0, gap)],mode='CONSTANT', constant_values=-1)class_keep.set_shape([config.DETECTION_MAX_INSTANCES])return class_keep# 2. 进行非极大抑制nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids,dtype=tf.int64)# 3. 找到符合要求的需要被保留的建议框nms_keep = tf.reshape(nms_keep, [-1])nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0])# 4. Compute intersection between keep and nms_keepkeep = tf.sets.set_intersection(tf.expand_dims(keep, 0),tf.expand_dims(nms_keep, 0))keep = tf.sparse_tensor_to_dense(keep)[0]# 寻找得分最高的num_keep个框roi_count = config.DETECTION_MAX_INSTANCESclass_scores_keep = tf.gather(class_scores, keep)num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count)top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1]keep = tf.gather(keep, top_ids)# Arrange output as [N, (y1, x1, y2, x2, class_id, score)]detections = tf.concat([tf.gather(refined_rois, keep),tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis],tf.gather(class_scores, keep)[..., tf.newaxis]], axis=1)# 如果达不到数量的话就paddinggap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0]detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT")return detectionsdef norm_boxes_graph(boxes, shape):h, w = tf.split(tf.cast(shape, tf.float32), 2)scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0)shift = tf.constant([0., 0., 1., 1.])return tf.divide(boxes - shift, scale)class DetectionLayer(Layer):def __init__(self, config=None, **kwargs):super(DetectionLayer, self).__init__(**kwargs)self.config = configdef call(self, inputs):rois = inputs[0]mrcnn_class = inputs[1]mrcnn_bbox = inputs[2]image_meta = inputs[3]# 找到window的小数形式m = parse_image_meta_graph(image_meta)image_shape = m['image_shape'][0]window = norm_boxes_graph(m['window'], image_shape[:2])# Run detection refinement graph on each item in the batchdetections_batch = utils.batch_slice([rois, mrcnn_class, mrcnn_bbox, window],lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config),self.config.IMAGES_PER_GPU)# Reshape output# [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] in# normalized coordinatesreturn tf.reshape(detections_batch,[self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6])def compute_output_shape(self, input_shape):return (None, self.config.DETECTION_MAX_INSTANCES, 6)#----------------------------------------------------------#
#   Detection Target Layer
#   该部分代码会输入建议框
#   判断建议框和真实框的重合情况
#   筛选出内部包含物体的建议框
#   利用建议框和真实框编码
#   调整mask的格式使得其和预测格式相同
#----------------------------------------------------------#def overlaps_graph(boxes1, boxes2):"""用于计算boxes1和boxes2的重合程度boxes1, boxes2: [N, (y1, x1, y2, x2)].返回 [len(boxes1), len(boxes2)]"""b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1),[1, 1, tf.shape(boxes2)[0]]), [-1, 4])b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1])b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1)b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1)y1 = tf.maximum(b1_y1, b2_y1)x1 = tf.maximum(b1_x1, b2_x1)y2 = tf.minimum(b1_y2, b2_y2)x2 = tf.minimum(b1_x2, b2_x2)intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0)b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1)b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1)union = b1_area + b2_area - intersectioniou = intersection / unionoverlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]])return overlapsdef detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config):asserts = [tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],name="roi_assertion"),]with tf.control_dependencies(asserts):proposals = tf.identity(proposals)# 移除之前获得的padding的部分proposals, _ = trim_zeros_graph(proposals, name="trim_proposals")gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes")gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros,name="trim_gt_class_ids")gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2,name="trim_gt_masks")# Handle COCO crowds# A crowd box in COCO is a bounding box around several instances. Exclude# them from training. A crowd box is given a negative class ID.crowd_ix = tf.where(gt_class_ids < 0)[:, 0]non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0]crowd_boxes = tf.gather(gt_boxes, crowd_ix)gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix)gt_boxes = tf.gather(gt_boxes, non_crowd_ix)gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2)# 计算建议框和所有真实框的重合程度 [proposals, gt_boxes]overlaps = overlaps_graph(proposals, gt_boxes)# 计算和 crowd boxes 的重合程度 [proposals, crowd_boxes]crowd_overlaps = overlaps_graph(proposals, crowd_boxes)crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)no_crowd_bool = (crowd_iou_max < 0.001)# Determine positive and negative ROIsroi_iou_max = tf.reduce_max(overlaps, axis=1)# 1. 正样本建议框和真实框的重合程度大于0.5positive_roi_bool = (roi_iou_max >= 0.5)positive_indices = tf.where(positive_roi_bool)[:, 0]# 2. 负样本建议框和真实框的重合程度小于0.5,Skip crowds.negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0]# Subsample ROIs. Aim for 33% positive# 进行正负样本的平衡# 取出最大33%的正样本positive_count = int(config.TRAIN_ROIS_PER_IMAGE *config.ROI_POSITIVE_RATIO)positive_indices = tf.random_shuffle(positive_indices)[:positive_count]positive_count = tf.shape(positive_indices)[0]# 保持正负样本比例r = 1.0 / config.ROI_POSITIVE_RATIOnegative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_countnegative_indices = tf.random_shuffle(negative_indices)[:negative_count]# 获得正样本和负样本positive_rois = tf.gather(proposals, positive_indices)negative_rois = tf.gather(proposals, negative_indices)# 获取建议框和真实框重合程度positive_overlaps = tf.gather(overlaps, positive_indices)# 判断是否有真实框roi_gt_box_assignment = tf.cond(tf.greater(tf.shape(positive_overlaps)[1], 0),true_fn = lambda: tf.argmax(positive_overlaps, axis=1),false_fn = lambda: tf.cast(tf.constant([]),tf.int64))# 找到每一个建议框对应的真实框和种类roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)# 解码获得网络应该有得预测结果deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes)deltas /= config.BBOX_STD_DEV# 切换mask的形式[N, height, width, 1]transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1)# 取出对应的层roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment)# Compute mask targetsboxes = positive_roisif config.USE_MINI_MASK:# Transform ROI coordinates from normalized image space# to normalized mini-mask space.y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1)gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1)gt_h = gt_y2 - gt_y1gt_w = gt_x2 - gt_x1y1 = (y1 - gt_y1) / gt_hx1 = (x1 - gt_x1) / gt_wy2 = (y2 - gt_y1) / gt_hx2 = (x2 - gt_x1) / gt_wboxes = tf.concat([y1, x1, y2, x2], 1)box_ids = tf.range(0, tf.shape(roi_masks)[0])masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes,box_ids,config.MASK_SHAPE)# Remove the extra dimension from masks.masks = tf.squeeze(masks, axis=3)# 防止resize后的结果不是1或者0masks = tf.round(masks)# 一般传入config.TRAIN_ROIS_PER_IMAGE个建议框进行训练,# 如果数量不够则paddingrois = tf.concat([positive_rois, negative_rois], axis=0)N = tf.shape(negative_rois)[0]P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)rois = tf.pad(rois, [(0, P), (0, 0)])roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])deltas = tf.pad(deltas, [(0, N + P), (0, 0)])masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)])return rois, roi_gt_class_ids, deltas, masksdef trim_zeros_graph(boxes, name='trim_zeros'):"""如果前一步没有满POST_NMS_ROIS_TRAINING个建议框,会有padding要去掉padding"""non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool)boxes = tf.boolean_mask(boxes, non_zeros, name=name)return boxes, non_zerosclass DetectionTargetLayer(Layer):"""找到建议框的ground_truthInputs:proposals: [batch, N, (y1, x1, y2, x2)]建议框gt_class_ids: [batch, MAX_GT_INSTANCES]每个真实框对应的类gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]真实框的位置gt_masks: [batch, height, width, MAX_GT_INSTANCES]真实框的语义分割情况Returns: rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)]内部真实存在目标的建议框target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]每个建议框对应的类target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)]每个建议框应该有的调整参数target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width]每个建议框语义分割情况"""def __init__(self, config, **kwargs):super(DetectionTargetLayer, self).__init__(**kwargs)self.config = configdef call(self, inputs):proposals = inputs[0]gt_class_ids = inputs[1]gt_boxes = inputs[2]gt_masks = inputs[3]# 对真实框进行编码names = ["rois", "target_class_ids", "target_bbox", "target_mask"]outputs = utils.batch_slice([proposals, gt_class_ids, gt_boxes, gt_masks],lambda w, x, y, z: detection_targets_graph(w, x, y, z, self.config),self.config.IMAGES_PER_GPU, names=names)return outputsdef compute_output_shape(self, input_shape):return [(None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # rois(None, self.config.TRAIN_ROIS_PER_IMAGE),  # class_ids(None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # deltas(None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0],self.config.MASK_SHAPE[1])  # masks]def compute_mask(self, inputs, mask=None):return [None, None, None, None]

mrcnn_training.py

import tensorflow as tf
import keras.backend as K
import random
import numpy as np
import logging
from utils import utils
from utils.anchors import compute_backbone_shapes,generate_pyramid_anchors
############################################################
#  Loss Functions
############################################################def batch_pack_graph(x, counts, num_rows):"""Picks different number of values from each rowin x depending on the values in counts."""outputs = []for i in range(num_rows):outputs.append(x[i, :counts[i]])return tf.concat(outputs, axis=0)def smooth_l1_loss(y_true, y_pred):"""Implements Smooth-L1 loss.y_true and y_pred are typically: [N, 4], but could be any shape."""diff = K.abs(y_true - y_pred)less_than_one = K.cast(K.less(diff, 1.0), "float32")loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5)return lossdef rpn_class_loss_graph(rpn_match, rpn_class_logits):"""RPN anchor classifier loss.rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,-1=negative, 0=neutral anchor.rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG."""# Squeeze last dim to simplifyrpn_match = tf.squeeze(rpn_match, -1)# Get anchor classes. Convert the -1/+1 match to 0/1 values.anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)# Positive and Negative anchors contribute to the loss,# but neutral anchors (match value = 0) don't.indices = tf.where(K.not_equal(rpn_match, 0))# Pick rows that contribute to the loss and filter out the rest.rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)anchor_class = tf.gather_nd(anchor_class, indices)# Cross entropy lossloss = K.sparse_categorical_crossentropy(target=anchor_class,output=rpn_class_logits,from_logits=True)loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))return lossdef rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox):"""Return the RPN bounding box loss graph.config: the model config object.target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))].Uses 0 padding to fill in unsed bbox deltas.rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,-1=negative, 0=neutral anchor.rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]"""# Positive anchors contribute to the loss, but negative and# neutral anchors (match value of 0 or -1) don't.rpn_match = K.squeeze(rpn_match, -1)indices = tf.where(K.equal(rpn_match, 1))# Pick bbox deltas that contribute to the lossrpn_bbox = tf.gather_nd(rpn_bbox, indices)# Trim target bounding box deltas to the same length as rpn_bbox.batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1)target_bbox = batch_pack_graph(target_bbox, batch_counts,config.IMAGES_PER_GPU)loss = smooth_l1_loss(target_bbox, rpn_bbox)loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))return lossdef mrcnn_class_loss_graph(target_class_ids, pred_class_logits,active_class_ids):"""Loss for the classifier head of Mask RCNN.target_class_ids: [batch, num_rois]. Integer class IDs. Uses zeropadding to fill in the array.pred_class_logits: [batch, num_rois, num_classes]active_class_ids: [batch, num_classes]. Has a value of 1 forclasses that are in the dataset of the image, and 0for classes that are not in the dataset."""# During model building, Keras calls this function with# target_class_ids of type float32. Unclear why. Cast it# to int to get around it.target_class_ids = tf.cast(target_class_ids, 'int64')# Find predictions of classes that are not in the dataset.pred_class_ids = tf.argmax(pred_class_logits, axis=2)# TODO: Update this line to work with batch > 1. Right now it assumes all#       images in a batch have the same active_class_idspred_active = tf.gather(active_class_ids[0], pred_class_ids)# Lossloss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_class_ids, logits=pred_class_logits)# Erase losses of predictions of classes that are not in the active# classes of the image.loss = loss * pred_active# Computer loss mean. Use only predictions that contribute# to the loss to get a correct mean.loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active)return lossdef mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox):"""Loss for Mask R-CNN bounding box refinement.target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))]target_class_ids: [batch, num_rois]. Integer class IDs.pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))]"""# Reshape to merge batch and roi dimensions for simplicity.target_class_ids = K.reshape(target_class_ids, (-1,))target_bbox = K.reshape(target_bbox, (-1, 4))pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4))# Only positive ROIs contribute to the loss. And only# the right class_id of each ROI. Get their indices.positive_roi_ix = tf.where(target_class_ids > 0)[:, 0]positive_roi_class_ids = tf.cast(tf.gather(target_class_ids, positive_roi_ix), tf.int64)indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1)# Gather the deltas (predicted and true) that contribute to losstarget_bbox = tf.gather(target_bbox, positive_roi_ix)pred_bbox = tf.gather_nd(pred_bbox, indices)# Smooth-L1 Lossloss = K.switch(tf.size(target_bbox) > 0,smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox),tf.constant(0.0))loss = K.mean(loss)return lossdef mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks):"""Mask binary cross-entropy loss for the masks head.target_masks: [batch, num_rois, height, width].A float32 tensor of values 0 or 1. Uses zero padding to fill array.target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.pred_masks: [batch, proposals, height, width, num_classes] float32 tensorwith values from 0 to 1."""# Reshape for simplicity. Merge first two dimensions into one.target_class_ids = K.reshape(target_class_ids, (-1,))mask_shape = tf.shape(target_masks)target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3]))pred_shape = tf.shape(pred_masks)pred_masks = K.reshape(pred_masks,(-1, pred_shape[2], pred_shape[3], pred_shape[4]))# Permute predicted masks to [N, num_classes, height, width]pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2])# Only positive ROIs contribute to the loss. And only# the class specific mask of each ROI.positive_ix = tf.where(target_class_ids > 0)[:, 0]positive_class_ids = tf.cast(tf.gather(target_class_ids, positive_ix), tf.int64)indices = tf.stack([positive_ix, positive_class_ids], axis=1)# Gather the masks (predicted and true) that contribute to lossy_true = tf.gather(target_masks, positive_ix)y_pred = tf.gather_nd(pred_masks, indices)# Compute binary cross entropy. If no positive ROIs, then return 0.# shape: [batch, roi, num_classes]loss = K.switch(tf.size(y_true) > 0,K.binary_crossentropy(target=y_true, output=y_pred),tf.constant(0.0))loss = K.mean(loss)return loss############################################################
#  Data Generator
############################################################def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,use_mini_mask=False):# 载入图片和语义分割效果image = dataset.load_image(image_id)mask, class_ids = dataset.load_mask(image_id)# print("\nbefore:",image_id,np.shape(mask),np.shape(class_ids))# 原始shapeoriginal_shape = image.shape# 获得新图片,原图片在新图片中的位置,变化的尺度,填充的情况等image, window, scale, padding, crop = utils.resize_image(image,min_dim=config.IMAGE_MIN_DIM,min_scale=config.IMAGE_MIN_SCALE,max_dim=config.IMAGE_MAX_DIM,mode=config.IMAGE_RESIZE_MODE)mask = utils.resize_mask(mask, scale, padding, crop)# print("\nafter:",np.shape(mask),np.shape(class_ids))# print(np.shape(image),np.shape(mask))# 可以把图片进行翻转if augment:logging.warning("'augment' is deprecated. Use 'augmentation' instead.")if random.randint(0, 1):image = np.fliplr(image)mask = np.fliplr(mask)if augmentation:import imgaug# 可用于图像增强MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes","Fliplr", "Flipud", "CropAndPad","Affine", "PiecewiseAffine"]def hook(images, augmenter, parents, default):"""Determines which augmenters to apply to masks."""return augmenter.__class__.__name__ in MASK_AUGMENTERSimage_shape = image.shapemask_shape = mask.shapedet = augmentation.to_deterministic()image = det.augment_image(image)mask = det.augment_image(mask.astype(np.uint8),hooks=imgaug.HooksImages(activator=hook))assert image.shape == image_shape, "Augmentation shouldn't change image size"assert mask.shape == mask_shape, "Augmentation shouldn't change mask size"mask = mask.astype(np.bool)# 检漏,防止某些层内部实际上不存在语义分割情况_idx = np.sum(mask, axis=(0, 1)) > 0# print("\nafterer:",np.shape(mask),np.shape(_idx))mask = mask[:, :, _idx]class_ids = class_ids[_idx]# 找到mask对应的boxbbox = utils.extract_bboxes(mask)active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]active_class_ids[source_class_ids] = 1if use_mini_mask:mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)# 生成Image_metaimage_meta = utils.compose_image_meta(image_id, original_shape, image.shape,window, scale, active_class_ids)return image, image_meta, class_ids, bbox, maskdef build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config):# 1代表正样本# -1代表负样本# 0代表忽略rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32)# 创建该部分内容利用先验框和真实框进行编码rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4))'''iscrowd=0的时候,表示这是一个单独的物体,轮廓用Polygon(多边形的点)表示,iscrowd=1的时候表示两个没有分开的物体,轮廓用RLE编码表示,比如说一张图片里面有三个人,一个人单独站一边,另外两个搂在一起(标注的时候距离太近分不开了),这个时候,单独的那个人的注释里面的iscrowing=0,segmentation用Polygon表示,而另外两个用放在同一个anatation的数组里面用一个segmention的RLE编码形式表示'''crowd_ix = np.where(gt_class_ids < 0)[0]if crowd_ix.shape[0] > 0:non_crowd_ix = np.where(gt_class_ids > 0)[0]crowd_boxes = gt_boxes[crowd_ix]gt_class_ids = gt_class_ids[non_crowd_ix]gt_boxes = gt_boxes[non_crowd_ix]crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes)crowd_iou_max = np.amax(crowd_overlaps, axis=1)no_crowd_bool = (crowd_iou_max < 0.001)else:no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool)# 计算先验框和真实框的重合程度 [num_anchors, num_gt_boxes]overlaps = utils.compute_overlaps(anchors, gt_boxes)# 1. 重合程度小于0.3则代表为负样本anchor_iou_argmax = np.argmax(overlaps, axis=1)anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax]rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1# 2. 每个真实框重合度最大的先验框是正样本gt_iou_argmax = np.argwhere(overlaps == np.max(overlaps, axis=0))[:,0]rpn_match[gt_iou_argmax] = 1# 3. 重合度大于0.7则代表为正样本rpn_match[anchor_iou_max >= 0.7] = 1# 正负样本平衡# 找到正样本的索引ids = np.where(rpn_match == 1)[0]# 如果大于(config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2)则删掉一些extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2)if extra > 0:ids = np.random.choice(ids, extra, replace=False)rpn_match[ids] = 0# 找到负样本的索引ids = np.where(rpn_match == -1)[0]# 使得总数为config.RPN_TRAIN_ANCHORS_PER_IMAGEextra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE -np.sum(rpn_match == 1))if extra > 0:# Rest the extra ones to neutralids = np.random.choice(ids, extra, replace=False)rpn_match[ids] = 0# 找到内部真实存在物体的先验框,进行编码ids = np.where(rpn_match == 1)[0]ix = 0 for i, a in zip(ids, anchors[ids]):gt = gt_boxes[anchor_iou_argmax[i]]# 计算真实框的中心,高宽gt_h = gt[2] - gt[0]gt_w = gt[3] - gt[1]gt_center_y = gt[0] + 0.5 * gt_hgt_center_x = gt[1] + 0.5 * gt_w# 计算先验框中心,高宽a_h = a[2] - a[0]a_w = a[3] - a[1]a_center_y = a[0] + 0.5 * a_ha_center_x = a[1] + 0.5 * a_w# 编码运算rpn_bbox[ix] = [(gt_center_y - a_center_y) / a_h,(gt_center_x - a_center_x) / a_w,np.log(gt_h / a_h),np.log(gt_w / a_w),]# 改变数量级rpn_bbox[ix] /= config.RPN_BBOX_STD_DEVix += 1return rpn_match, rpn_bboxdef data_generator(dataset, config, shuffle=True, augment=False, augmentation=None,batch_size=1, detection_targets=False,no_augmentation_sources=None):"""inputs list:- images: [batch, H, W, C]- image_meta: [batch, (meta data)] Image details. See compose_image_meta()- rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)- rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.- gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs- gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]- gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and widthare those of the image unless use_mini_mask is True, in whichcase they are defined in MINI_MASK_SHAPE.outputs list: Usually empty in regular training. But if detection_targetsis True then the outputs list contains target class_ids, bbox deltas,and masks."""b = 0  # batch item indeximage_index = -1image_ids = np.copy(dataset.image_ids)no_augmentation_sources = no_augmentation_sources or []# [anchor_count, (y1, x1, y2, x2)]# 计算获得先验框backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE)anchors = generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,config.RPN_ANCHOR_RATIOS,backbone_shapes,config.BACKBONE_STRIDES,config.RPN_ANCHOR_STRIDE)while True:image_index = (image_index + 1) % len(image_ids)if shuffle and image_index == 0:np.random.shuffle(image_ids)# 获得idimage_id = image_ids[image_index]# 获得图片,真实框,语义分割结果等if dataset.image_info[image_id]['source'] in no_augmentation_sources:image, image_meta, gt_class_ids, gt_boxes, gt_masks = \load_image_gt(dataset, config, image_id, augment=augment,augmentation=None,use_mini_mask=config.USE_MINI_MASK)else:image, image_meta, gt_class_ids, gt_boxes, gt_masks = \load_image_gt(dataset, config, image_id, augment=augment,augmentation=augmentation,use_mini_mask=config.USE_MINI_MASK)if not np.any(gt_class_ids > 0):continue# RPN Targetsrpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors,gt_class_ids, gt_boxes, config)# 如果某张图片里面物体的数量大于最大值的话,则进行筛选,防止过大if gt_boxes.shape[0] > config.MAX_GT_INSTANCES:ids = np.random.choice(np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False)gt_class_ids = gt_class_ids[ids]gt_boxes = gt_boxes[ids]gt_masks = gt_masks[:, :, ids]# 初始化用于训练的内容if b == 0:batch_image_meta = np.zeros((batch_size,) + image_meta.shape, dtype=image_meta.dtype)batch_rpn_match = np.zeros([batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype)batch_rpn_bbox = np.zeros([batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype)batch_images = np.zeros((batch_size,) + image.shape, dtype=np.float32)batch_gt_class_ids = np.zeros((batch_size, config.MAX_GT_INSTANCES), dtype=np.int32)batch_gt_boxes = np.zeros((batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32)batch_gt_masks = np.zeros((batch_size, gt_masks.shape[0], gt_masks.shape[1],config.MAX_GT_INSTANCES), dtype=gt_masks.dtype)# Add to batchbatch_image_meta[b] = image_metabatch_rpn_match[b] = rpn_match[:, np.newaxis]batch_rpn_bbox[b] = rpn_bboxbatch_images[b] = utils.mold_image(image.astype(np.float32), config)batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_idsbatch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxesbatch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masksb += 1# Batch full?if b >= batch_size:inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox,batch_gt_class_ids, batch_gt_boxes, batch_gt_masks]outputs = []yield inputs, outputs# start a new batchb = 0

mrcnn.py

from keras.layers import Input,ZeroPadding2D,Conv2D,MaxPooling2D,BatchNormalization,Activation,UpSampling2D,Add,Lambda,Concatenate
from keras.layers import Reshape,TimeDistributed,Dense,Conv2DTranspose
from keras.models import Model
import keras.backend as K
from nets.resnet import get_resnet
from nets.layers import ProposalLayer,PyramidROIAlign,DetectionLayer,DetectionTargetLayer
from nets.mrcnn_training import *
from utils.anchors import get_anchors
from utils.utils import norm_boxes_graph,parse_image_meta_graph
import tensorflow as tf
import numpy as np'''
TimeDistributed:
对FPN网络输出的多层卷积特征进行共享参数。
TimeDistributed的意义在于使不同层的特征图共享权重。
'''
#------------------------------------#
#   五个不同大小的特征层会传入到
#   RPN当中,获得建议框
#------------------------------------#
def rpn_graph(feature_map, anchors_per_location):shared = Conv2D(512, (3, 3), padding='same', activation='relu',name='rpn_conv_shared')(feature_map)x = Conv2D(2 * anchors_per_location, (1, 1), padding='valid',activation='linear', name='rpn_class_raw')(shared)# batch_size,num_anchors,2# 代表这个先验框对应的类rpn_class_logits = Reshape([-1,2])(x)rpn_probs = Activation("softmax", name="rpn_class_xxx")(rpn_class_logits)x = Conv2D(anchors_per_location * 4, (1, 1), padding="valid",activation='linear', name='rpn_bbox_pred')(shared)# batch_size,num_anchors,4# 这个先验框的调整参数rpn_bbox = Reshape([-1,4])(x)return [rpn_class_logits, rpn_probs, rpn_bbox]#------------------------------------#
#   建立建议框网络模型
#   RPN模型
#------------------------------------#
def build_rpn_model(anchors_per_location, depth):input_feature_map = Input(shape=[None, None, depth],name="input_rpn_feature_map")outputs = rpn_graph(input_feature_map, anchors_per_location)return Model([input_feature_map], outputs, name="rpn_model")#------------------------------------#
#   建立classifier模型
#   这个模型的预测结果会调整建议框
#   获得最终的预测框
#------------------------------------#
def fpn_classifier_graph(rois, feature_maps, image_meta,pool_size, num_classes, train_bn=True,fc_layers_size=1024):# ROI Pooling,利用建议框在特征层上进行截取# Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels]x = PyramidROIAlign([pool_size, pool_size],name="roi_align_classifier")([rois, image_meta] + feature_maps)# Shape: [batch, num_rois, 1, 1, fc_layers_size],相当于两次全连接x = TimeDistributed(Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"),name="mrcnn_class_conv1")(x)x = TimeDistributed(BatchNormalization(), name='mrcnn_class_bn1')(x, training=train_bn)x = Activation('relu')(x)# Shape: [batch, num_rois, 1, 1, fc_layers_size]x = TimeDistributed(Conv2D(fc_layers_size, (1, 1)),name="mrcnn_class_conv2")(x)x = TimeDistributed(BatchNormalization(), name='mrcnn_class_bn2')(x, training=train_bn)x = Activation('relu')(x)# Shape: [batch, num_rois, fc_layers_size]shared = Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),name="pool_squeeze")(x)# Classifier head# 这个的预测结果代表这个先验框内部的物体的种类mrcnn_class_logits = TimeDistributed(Dense(num_classes),name='mrcnn_class_logits')(shared)mrcnn_probs = TimeDistributed(Activation("softmax"),name="mrcnn_class")(mrcnn_class_logits)# BBox head# 这个的预测结果会对先验框进行调整# [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))]x = TimeDistributed(Dense(num_classes * 4, activation='linear'),name='mrcnn_bbox_fc')(shared)# Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]mrcnn_bbox = Reshape((-1, num_classes, 4), name="mrcnn_bbox")(x)return mrcnn_class_logits, mrcnn_probs, mrcnn_bboxdef build_fpn_mask_graph(rois, feature_maps, image_meta,pool_size, num_classes, train_bn=True):# ROI Align,利用建议框在特征层上进行截取# Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]x = PyramidROIAlign([pool_size, pool_size],name="roi_align_mask")([rois, image_meta] + feature_maps)# Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),name="mrcnn_mask_conv1")(x)x = TimeDistributed(BatchNormalization(),name='mrcnn_mask_bn1')(x, training=train_bn)x = Activation('relu')(x)# Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),name="mrcnn_mask_conv2")(x)x = TimeDistributed(BatchNormalization(),name='mrcnn_mask_bn2')(x, training=train_bn)x = Activation('relu')(x)# Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),name="mrcnn_mask_conv3")(x)x = TimeDistributed(BatchNormalization(),name='mrcnn_mask_bn3')(x, training=train_bn)x = Activation('relu')(x)# Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),name="mrcnn_mask_conv4")(x)x = TimeDistributed(BatchNormalization(),name='mrcnn_mask_bn4')(x, training=train_bn)x = Activation('relu')(x)# Shape: [batch, num_rois, 2xMASK_POOL_SIZE, 2xMASK_POOL_SIZE, channels]x = TimeDistributed(Conv2DTranspose(256, (2, 2), strides=2, activation="relu"),name="mrcnn_mask_deconv")(x)# 反卷积后再次进行一个1x1卷积调整通道,使其最终数量为numclasses,代表分的类x = TimeDistributed(Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),name="mrcnn_mask")(x)return xdef get_predict_model(config):h, w = config.IMAGE_SHAPE[:2]if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):raise Exception("Image size must be dividable by 2 at least 6 times ""to avoid fractions when downscaling and upscaling.""For example, use 256, 320, 384, 448, 512, ... etc. ")# 输入进来的图片必须是2的6次方以上的倍数input_image = Input(shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")# meta包含了一些必要信息input_image_meta = Input(shape=[config.IMAGE_META_SIZE],name="input_image_meta")# 输入进来的先验框input_anchors = Input(shape=[None, 4], name="input_anchors")# 获得Resnet里的压缩程度不同的一些层_, C2, C3, C4, C5 = get_resnet(input_image, stage5=True, train_bn=config.TRAIN_BN)# 组合成特征金字塔的结构# P5长宽共压缩了5次# Height/32,Width/32,256P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)# P4长宽共压缩了4次# Height/16,Width/16,256P4 = Add(name="fpn_p4add")([UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])# P4长宽共压缩了3次# Height/8,Width/8,256P3 = Add(name="fpn_p3add")([UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])# P4长宽共压缩了2次# Height/4,Width/4,256P2 = Add(name="fpn_p2add")([UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])# 各自进行一次256通道的卷积,此时P2、P3、P4、P5通道数相同# Height/4,Width/4,256P2 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)# Height/8,Width/8,256P3 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)# Height/16,Width/16,256P4 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)# Height/32,Width/32,256P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)# 在建议框网络里面还有一个P6用于获取建议框# Height/64,Width/64,256P6 = MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)# P2, P3, P4, P5, P6可以用于获取建议框rpn_feature_maps = [P2, P3, P4, P5, P6]# P2, P3, P4, P5用于获取mask信息mrcnn_feature_maps = [P2, P3, P4, P5]anchors = input_anchors# 建立RPN模型rpn = build_rpn_model(len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)rpn_class_logits, rpn_class, rpn_bbox = [],[],[]# 获得RPN网络的预测结果,进行格式调整,把五个特征层的结果进行堆叠for p in rpn_feature_maps:logits,classes,bbox = rpn([p])rpn_class_logits.append(logits)rpn_class.append(classes)rpn_bbox.append(bbox)rpn_class_logits = Concatenate(axis=1,name="rpn_class_logits")(rpn_class_logits)rpn_class = Concatenate(axis=1,name="rpn_class")(rpn_class)rpn_bbox = Concatenate(axis=1,name="rpn_bbox")(rpn_bbox)# 此时获得的rpn_class_logits、rpn_class、rpn_bbox的维度是# rpn_class_logits : Batch_size, num_anchors, 2# rpn_class : Batch_size, num_anchors, 2# rpn_bbox : Batch_size, num_anchors, 4proposal_count = config.POST_NMS_ROIS_INFERENCE# Batch_size, proposal_count, 4# 对先验框进行解码rpn_rois = ProposalLayer(proposal_count=proposal_count,nms_threshold=config.RPN_NMS_THRESHOLD,name="ROI",config=config)([rpn_class, rpn_bbox, anchors])# 获得classifier的结果mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,config.POOL_SIZE, config.NUM_CLASSES,train_bn=config.TRAIN_BN,fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)detections = DetectionLayer(config, name="mrcnn_detection")([rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])detection_boxes = Lambda(lambda x: x[..., :4])(detections)# 获得mask的结果mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps,input_image_meta,config.MASK_POOL_SIZE,config.NUM_CLASSES,train_bn=config.TRAIN_BN)# 作为输出model = Model([input_image, input_image_meta, input_anchors],[detections, mrcnn_class, mrcnn_bbox,mrcnn_mask, rpn_rois, rpn_class, rpn_bbox],name='mask_rcnn')return modeldef get_train_model(config):h, w = config.IMAGE_SHAPE[:2]if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):raise Exception("Image size must be dividable by 2 at least 6 times ""to avoid fractions when downscaling and upscaling.""For example, use 256, 320, 384, 448, 512, ... etc. ")# 输入进来的图片必须是2的6次方以上的倍数input_image = Input(shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")# meta包含了一些必要信息input_image_meta = Input(shape=[config.IMAGE_META_SIZE],name="input_image_meta")# RPN建议框网络的真实框信息input_rpn_match = Input(shape=[None, 1], name="input_rpn_match", dtype=tf.int32)input_rpn_bbox = Input(shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)# 种类信息input_gt_class_ids = Input(shape=[None], name="input_gt_class_ids", dtype=tf.int32)# 框的位置信息input_gt_boxes = Input(shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)# 标准化到0-1之间gt_boxes = Lambda(lambda x: norm_boxes_graph(x, K.shape(input_image)[1:3]))(input_gt_boxes)# mask语义分析信息# [batch, height, width, MAX_GT_INSTANCES]if config.USE_MINI_MASK:input_gt_masks = Input(shape=[config.MINI_MASK_SHAPE[0],config.MINI_MASK_SHAPE[1], None],name="input_gt_masks", dtype=bool)else:input_gt_masks = Input(shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],name="input_gt_masks", dtype=bool)# 获得Resnet里的压缩程度不同的一些层_, C2, C3, C4, C5 = get_resnet(input_image, stage5=True, train_bn=config.TRAIN_BN)# 组合成特征金字塔的结构# P5长宽共压缩了5次# Height/32,Width/32,256P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)# P4长宽共压缩了4次# Height/16,Width/16,256P4 = Add(name="fpn_p4add")([UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])# P4长宽共压缩了3次# Height/8,Width/8,256P3 = Add(name="fpn_p3add")([UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])# P4长宽共压缩了2次# Height/4,Width/4,256P2 = Add(name="fpn_p2add")([UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])# 各自进行一次256通道的卷积,此时P2、P3、P4、P5通道数相同# Height/4,Width/4,256P2 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)# Height/8,Width/8,256P3 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)# Height/16,Width/16,256P4 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)# Height/32,Width/32,256P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)# 在建议框网络里面还有一个P6用于获取建议框# Height/64,Width/64,256P6 = MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)# P2, P3, P4, P5, P6可以用于获取建议框rpn_feature_maps = [P2, P3, P4, P5, P6]# P2, P3, P4, P5用于获取mask信息mrcnn_feature_maps = [P2, P3, P4, P5]anchors = get_anchors(config,config.IMAGE_SHAPE)# 拓展anchors的shape,第一个维度拓展为batch_sizeanchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)# 将anchors转化成tensor的形式anchors = Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)# 建立RPN模型rpn = build_rpn_model(len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)rpn_class_logits, rpn_class, rpn_bbox = [],[],[]# 获得RPN网络的预测结果,进行格式调整,把五个特征层的结果进行堆叠for p in rpn_feature_maps:logits,classes,bbox = rpn([p])rpn_class_logits.append(logits)rpn_class.append(classes)rpn_bbox.append(bbox)rpn_class_logits = Concatenate(axis=1,name="rpn_class_logits")(rpn_class_logits)rpn_class = Concatenate(axis=1,name="rpn_class")(rpn_class)rpn_bbox = Concatenate(axis=1,name="rpn_bbox")(rpn_bbox)# 此时获得的rpn_class_logits、rpn_class、rpn_bbox的维度是# rpn_class_logits : Batch_size, num_anchors, 2# rpn_class : Batch_size, num_anchors, 2# rpn_bbox : Batch_size, num_anchors, 4proposal_count = config.POST_NMS_ROIS_TRAINING# Batch_size, proposal_count, 4rpn_rois = ProposalLayer(proposal_count=proposal_count,nms_threshold=config.RPN_NMS_THRESHOLD,name="ROI",config=config)([rpn_class, rpn_bbox, anchors])active_class_ids = Lambda(lambda x: parse_image_meta_graph(x)["active_class_ids"])(input_image_meta)if not config.USE_RPN_ROIS:# 使用外部输入的建议框input_rois = Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],name="input_roi", dtype=np.int32)# Normalize coordinatestarget_rois = Lambda(lambda x: norm_boxes_graph(x, K.shape(input_image)[1:3]))(input_rois)else:# 利用预测到的建议框进行下一步的操作target_rois = rpn_rois"""找到建议框的ground_truthInputs:proposals: [batch, N, (y1, x1, y2, x2)]建议框gt_class_ids: [batch, MAX_GT_INSTANCES]每个真实框对应的类gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]真实框的位置gt_masks: [batch, height, width, MAX_GT_INSTANCES]真实框的语义分割情况Returns: rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)]内部真实存在目标的建议框target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]每个建议框对应的类target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)]每个建议框应该有的调整参数target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width]每个建议框语义分割情况"""rois, target_class_ids, target_bbox, target_mask =\DetectionTargetLayer(config, name="proposal_targets")([target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])# 找到合适的建议框的classifier预测结果mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,config.POOL_SIZE, config.NUM_CLASSES,train_bn=config.TRAIN_BN,fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)# 找到合适的建议框的mask预测结果mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,input_image_meta,config.MASK_POOL_SIZE,config.NUM_CLASSES,train_bn=config.TRAIN_BN)output_rois = Lambda(lambda x: x * 1, name="output_rois")(rois)# Lossesrpn_class_loss = Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")([input_rpn_match, rpn_class_logits])rpn_bbox_loss = Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")([input_rpn_bbox, input_rpn_match, rpn_bbox])class_loss = Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")([target_class_ids, mrcnn_class_logits, active_class_ids])bbox_loss = Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")([target_bbox, target_class_ids, mrcnn_bbox])mask_loss = Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")([target_mask, target_class_ids, mrcnn_mask])# Modelinputs = [input_image, input_image_meta,input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]if not config.USE_RPN_ROIS:inputs.append(input_rois)outputs = [rpn_class_logits, rpn_class, rpn_bbox,mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,rpn_rois, output_rois,rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]model = Model(inputs, outputs, name='mask_rcnn')return model

resnet.py

from keras.layers import ZeroPadding2D,Conv2D,MaxPooling2D,BatchNormalization,Activation,Adddef identity_block(input_tensor, kernel_size, filters, stage, block,use_bias=True, train_bn=True):nb_filter1, nb_filter2, nb_filter3 = filtersconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'x = Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a',use_bias=use_bias)(input_tensor)x = BatchNormalization(name=bn_name_base + '2a')(x, training=train_bn)x = Activation('relu')(x)x = Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',name=conv_name_base + '2b', use_bias=use_bias)(x)x = BatchNormalization(name=bn_name_base + '2b')(x, training=train_bn)x = Activation('relu')(x)x = Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c',use_bias=use_bias)(x)x = BatchNormalization(name=bn_name_base + '2c')(x, training=train_bn)x = Add()([x, input_tensor])x = Activation('relu', name='res' + str(stage) + block + '_out')(x)return xdef conv_block(input_tensor, kernel_size, filters, stage, block,strides=(2, 2), use_bias=True, train_bn=True):nb_filter1, nb_filter2, nb_filter3 = filtersconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'x = Conv2D(nb_filter1, (1, 1), strides=strides,name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)x = BatchNormalization(name=bn_name_base + '2a')(x, training=train_bn)x = Activation('relu')(x)x = Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',name=conv_name_base + '2b', use_bias=use_bias)(x)x = BatchNormalization(name=bn_name_base + '2b')(x, training=train_bn)x = Activation('relu')(x)x = Conv2D(nb_filter3, (1, 1), name=conv_name_base +'2c', use_bias=use_bias)(x)x = BatchNormalization(name=bn_name_base + '2c')(x, training=train_bn)shortcut = Conv2D(nb_filter3, (1, 1), strides=strides,name=conv_name_base + '1', use_bias=use_bias)(input_tensor)shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut, training=train_bn)x = Add()([x, shortcut])x = Activation('relu', name='res' + str(stage) + block + '_out')(x)return xdef get_resnet(input_image,stage5=False, train_bn=True):# Stage 1x = ZeroPadding2D((3, 3))(input_image)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)x = BatchNormalization(name='bn_conv1')(x, training=train_bn)x = Activation('relu')(x)# Height/4,Width/4,64C1 = x = MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)# Stage 2x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)# Height/4,Width/4,256C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)# Stage 3x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)# Height/8,Width/8,512C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)# Stage 4x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)block_count = 22for i in range(block_count):x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)# Height/16,Width/16,1024C4 = x# Stage 5if stage5:x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)# Height/32,Width/32,2048C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)else:C5 = Nonereturn [C1, C2, C3, C4, C5]

5.2 mask_rcnn.py

import os
import sys
import random
import math
import numpy as np
import skimage.io
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
from nets.mrcnn import get_predict_model
from utils.config import Config
from utils.anchors import get_anchors
from utils.utils import mold_inputs,unmold_detections
from utils import visualize
import keras.backend as K
class MASK_RCNN(object):_defaults = {"model_path": 'model_data/mask_rcnn_coco.h5',"classes_path": 'model_data/coco_classes.txt',"confidence": 0.7,# 使用coco数据集检测的时候,IMAGE_MIN_DIM=1024,IMAGE_MAX_DIM=1024, RPN_ANCHOR_SCALES=(32, 64, 128, 256, 512)"RPN_ANCHOR_SCALES": (32, 64, 128, 256, 512),"IMAGE_MIN_DIM": 1024,"IMAGE_MAX_DIM": 1024,# 在使用自己的数据集进行训练的时候,如果显存不足要调小图片大小# 同时要调小anchors#"IMAGE_MIN_DIM": 512,#"IMAGE_MAX_DIM": 512,#"RPN_ANCHOR_SCALES": (16, 32, 64, 128, 256)}@classmethoddef get_defaults(cls, n):if n in cls._defaults:return cls._defaults[n]else:return "Unrecognized attribute name '" + n + "'"#---------------------------------------------------##   初始化Mask-Rcnn#---------------------------------------------------#def __init__(self, **kwargs):self.__dict__.update(self._defaults)self.class_names = self._get_class()self.sess = K.get_session()self.config = self._get_config()self.generate()#---------------------------------------------------##   获得所有的分类#---------------------------------------------------#def _get_class(self):classes_path = os.path.expanduser(self.classes_path)with open(classes_path) as f:class_names = f.readlines()class_names = [c.strip() for c in class_names]class_names.insert(0,"BG")return class_namesdef _get_config(self):class InferenceConfig(Config):NUM_CLASSES = len(self.class_names)GPU_COUNT = 1IMAGES_PER_GPU = 1DETECTION_MIN_CONFIDENCE = self.confidenceNAME = "shapes"RPN_ANCHOR_SCALES = self.RPN_ANCHOR_SCALESIMAGE_MIN_DIM = self.IMAGE_MIN_DIMIMAGE_MAX_DIM = self.IMAGE_MAX_DIMconfig = InferenceConfig()config.display()return config#---------------------------------------------------##   生成模型#---------------------------------------------------#def generate(self):model_path = os.path.expanduser(self.model_path)assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'# 计算总的种类self.num_classes = len(self.class_names)# 载入模型,如果原来的模型里已经包括了模型结构则直接载入。# 否则先构建模型再载入self.model = get_predict_model(self.config)self.model.load_weights(self.model_path,by_name=True)#---------------------------------------------------##   检测图片#---------------------------------------------------#def detect_image(self, image):image = [np.array(image)]molded_images, image_metas, windows = mold_inputs(self.config,image)image_shape = molded_images[0].shapeanchors = get_anchors(self.config,image_shape)anchors = np.broadcast_to(anchors, (1,) + anchors.shape)detections, _, _, mrcnn_mask, _, _, _ =\self.model.predict([molded_images, image_metas, anchors], verbose=0)final_rois, final_class_ids, final_scores, final_masks =\unmold_detections(detections[0], mrcnn_mask[0],image[0].shape, molded_images[0].shape,windows[0])r = {"rois": final_rois,"class_ids": final_class_ids,"scores": final_scores,"masks": final_masks,}visualize.display_instances(image[0], r['rois'], r['masks'], r['class_ids'], self.class_names, r['scores'])def close_session(self):self.sess.close()

5.3 train.py

import os
from PIL import Image
import keras
import numpy as np
import randomimport tensorflow as tf
from utils import visualize
from utils.config import Config
from utils.anchors import get_anchors
from utils.utils import mold_inputs,unmold_detections
from nets.mrcnn import get_train_model,get_predict_model
from nets.mrcnn_training import data_generator,load_image_gt
from dataset import ShapesDatasetdef log(text, array=None):"""Prints a text message. And, optionally, if a Numpy array is provided itprints it's shape, min, and max values."""if array is not None:text = text.ljust(25)text += ("shape: {:20}  ".format(str(array.shape)))if array.size:text += ("min: {:10.5f}  max: {:10.5f}".format(array.min(),array.max()))else:text += ("min: {:10}  max: {:10}".format("",""))text += "  {}".format(array.dtype)print(text)class ShapesConfig(Config):NAME = "shapes"GPU_COUNT = 1IMAGES_PER_GPU = 1BATCH_SIZE = 1NUM_CLASSES = 1 + 3RPN_ANCHOR_SCALES = (16, 32, 64, 128, 256)IMAGE_MIN_DIM = 512IMAGE_MAX_DIM = 512STEPS_PER_EPOCH = 250VALIDATION_STEPS = 25if __name__ == "__main__":learning_rate = 1e-5init_epoch = 0epoch = 100dataset_root_path="./train_dataset/"img_floder = dataset_root_path + "imgs/"mask_floder = dataset_root_path + "mask/"yaml_floder = dataset_root_path + "yaml/"imglist = os.listdir(img_floder)count = len(imglist)np.random.seed(10101)np.random.shuffle(imglist)train_imglist = imglist[:int(count*0.9)]val_imglist = imglist[int(count*0.9):]MODEL_DIR = "logs"COCO_MODEL_PATH = "model_data/mask_rcnn_coco.h5"config = ShapesConfig()config.display()# 训练数据集准备dataset_train = ShapesDataset()dataset_train.load_shapes(len(train_imglist), img_floder, mask_floder, train_imglist, yaml_floder)dataset_train.prepare()# 验证数据集准备dataset_val = ShapesDataset()dataset_val.load_shapes(len(val_imglist), img_floder, mask_floder, val_imglist, yaml_floder)dataset_val.prepare()# 获得训练模型model = get_train_model(config)model.load_weights(COCO_MODEL_PATH,by_name=True,skip_mismatch=True)# 数据生成器train_generator = data_generator(dataset_train, config, shuffle=True,batch_size=config.BATCH_SIZE)val_generator = data_generator(dataset_val, config, shuffle=True,batch_size=config.BATCH_SIZE)# 回执函数# 每次训练一个世代都会保存callbacks = [keras.callbacks.TensorBoard(log_dir=MODEL_DIR,histogram_freq=0, write_graph=True, write_images=False),keras.callbacks.ModelCheckpoint(os.path.join(MODEL_DIR, "epoch{epoch:03d}_loss{loss:.3f}_val_loss{val_loss:.3f}.h5"),verbose=0, save_weights_only=True),]log("\nStarting at epoch {}. LR={}\n".format(init_epoch, learning_rate))log("Checkpoint Path: {}".format(MODEL_DIR))# 使用的优化器是optimizer = keras.optimizers.Adam(lr=learning_rate)# 设置一下loss信息model._losses = []model._per_input_losses = {}loss_names = ["rpn_class_loss",  "rpn_bbox_loss","mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"]for name in loss_names:layer = model.get_layer(name)if layer.output in model.losses:continueloss = (tf.reduce_mean(layer.output, keepdims=True)* config.LOSS_WEIGHTS.get(name, 1.))model.add_loss(loss)# 增加L2正则化,放置过拟合reg_losses = [keras.regularizers.l2(config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32)for w in model.trainable_weightsif 'gamma' not in w.name and 'beta' not in w.name]model.add_loss(tf.add_n(reg_losses))# 进行编译model.compile(optimizer=optimizer,loss=[None] * len(model.outputs))# 用于显示训练情况for name in loss_names:if name in model.metrics_names:print(name)continuelayer = model.get_layer(name)model.metrics_names.append(name)loss = (tf.reduce_mean(layer.output, keepdims=True)* config.LOSS_WEIGHTS.get(name, 1.))model.metrics_tensors.append(loss)model.fit_generator(train_generator,initial_epoch=init_epoch,epochs=epoch,steps_per_epoch=config.STEPS_PER_EPOCH,callbacks=callbacks,validation_data=val_generator,validation_steps=config.VALIDATION_STEPS,max_queue_size=100)

5.4 predict.py

from keras.layers import Input
from mask_rcnn import MASK_RCNN 
from PIL import Imagemask_rcnn = MASK_RCNN()while True:img = input('img/street.jpg')try:image = Image.open('img/street.jpg')except:print('Open Error! Try again!')continueelse:mask_rcnn.detect_image(image)
mask_rcnn.close_session()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ES搭建集群

一、创建 elasticsearch-cluster 文件夹 创建 elasticsearch-7.8.0-cluster 文件夹&#xff0c;在内部复制三个 elasticsearch 服务。 然后每个文件目录中每个节点的 config/elasticsearch.yml 配置文件 node-1001 节点 #节点 1 的配置信息&#xff1a; #集群名称&#xff0…

【数据备份、恢复、迁移与容灾】上海道宁与云祺科技为企业用户提供云数据中心容灾备份解决方案

云祺容灾备份系统支持 主流虚拟化环境下的虚拟机备份 提供对云基础设施 云架构平台以及 应用系统的全方位数据保护 云祺容灾备份系统规范功能 增强决策能力 高效恢复数据至可用状态 有效降低恢复成本 更大限度减少业务中断时间 保障业务可访问性 开发商介绍 成都云祺…

LSTM数学计算公式

LSTM&#xff08;长短期记忆网络&#xff09;是一种循环神经网络&#xff08;RNN&#xff09;的变体&#xff0c;常用于处理时间序列相关的任务。下面将简要介绍LSTM的数学推导和公式模型。 在训练一般神经网络模型时&#xff0c;通常用,其中W为权重&#xff0c;X为输入&#…

算法通关村第九关——中序遍历与搜索树

1 中序遍历和搜索树原理 二叉搜索树按照中序遍历正好是一个递增序列。其比较规范的定义是&#xff1a; 若它的左子树不为空&#xff0c;则左子树上所有节点的值均小于它的根节点的值&#xff1b;若它的右子树不为空&#xff0c;则右子树所有节点的值均大于它的根节点的值&…

【网络层协议】ARP攻击与欺骗常见的手段以及工作原理

个人主页&#xff1a;insist--个人主页​​​​​​ 本文专栏&#xff1a;网络基础——带你走进网络世界 本专栏会持续更新网络基础知识&#xff0c;希望大家多多支持&#xff0c;让我们一起探索这个神奇而广阔的网络世界。 目录 一、ARP攻击的常见手段 第一种&#xff1a;IP…

【健康医疗】Axure用药提醒小程序原型图,健康管理用药助手原型模板

作品概况 页面数量&#xff1a;共 20 页 兼容软件&#xff1a;Axure RP 9/10&#xff0c;不支持低版本 应用领域&#xff1a;健康管理&#xff0c;用药助手 作品申明&#xff1a;页面内容仅用于功能演示&#xff0c;无实际功能 作品特色 本作品为「用药提醒」小程序原型图…

Spring Boot 知识集锦之actuator监控端点详解

文章目录 0.前言1.参考文档2.基础介绍默认支持的端点 3.步骤3.1. 引入依赖3.2. 配置文件3.3. 核心源码 4.示例项目5.总结 0.前言 背景&#xff1a; 一直零散的使用着Spring Boot 的各种组件和特性&#xff0c;从未系统性的学习和总结&#xff0c;本次借着这个机会搞一波。共同学…

Android NDK JNI与Java的相互调用

一、Jni调用Java代码 jni可以调用java中的方法和java中的成员变量,因此JNIEnv定义了一系列的方法来帮助我们调用java的方法和成员变量。 以上就是jni调用java类的大部分方法,如果是静态的成员变量和静态方法,可以使用***GetStaticMethodID、CallStaticObjectMethod等***。就…

『C语言』数据在内存中的存储规则

前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成&#xff0c;接下来小羊会继续追更C语言进阶相关知识&#xff0c;小伙伴们坐好板凳&#xff0c;拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型&#xff1a; char //字符数据类型 short …

SpeedBI数据可视化工具:浏览器上做分析

SpeedBI数据分析云是一种在浏览器上进行数据可视化分析的工具&#xff0c;它能够将数据以可视化的形式呈现出来&#xff0c;并支持多种数据源和图表类型。 所有操作&#xff0c;均在浏览器上进行 在浏览器中打开SpeedBI数据分析云官网&#xff0c;点击【免费使用】进入&#…

微服务(多级缓存)

多级缓存 1.什么是多级缓存 传统的缓存策略一般是请求到达Tomcat后&#xff0c;先查询Redis&#xff0c;如果未命中则查询数据库&#xff0c;如图&#xff1a; 存在下面的问题&#xff1a; 请求要经过Tomcat处理&#xff0c;Tomcat的性能成为整个系统的瓶颈Redis缓存失效时&…

SpringCloud学习笔记(二)_Eureka注册中心

一、Eureka简介 Eureka是一项基于REST&#xff08;代表性状态转移&#xff09;的服务&#xff0c;主要在AWS云中用于定位服务&#xff0c;以实现负载均衡和中间层服务器的故障转移。我们称此服务为Eureka Server。Eureka还带有一个基于Java的客户端组件Eureka Client&#xff…

发布 net 项目 到 Docker

背景 因为发布到 centOS8 使用 screen -S 可以&#xff0c;想开机自启 使用 nohup 命令有启动不起来。环境问题不好找&#xff0c;就想尝试用 docker 运行 步骤 在生成的 Dockerfile 文件里增加修改时区指令 因为我们用的都是北京时间所以 创建镜像的时候就调整好 #设置时间…

B站视频码率用户上传视频的视频码率

一般来说&#xff0c;B站用户可以根据自己的视频内容和需求来选择视频的码率&#xff0c;但以下是一些常见的视频码率范围&#xff0c;供用户参考&#xff1a; 标清&#xff08;SD&#xff09;&#xff1a; 码率范围可能在500 Kbps至1.5 Mbps左右&#xff0c;适用于480p的分辨率…

【JavaEE基础学习打卡05】JDBC之基本入门就可以了

目录 前言一、JDBC学习前说明1.Java SE中JDBC2.JDBC版本 二、JDBC基本概念1.JDBC原理2.JDBC组件 三、JDBC基本编程步骤1.JDBC操作的数据库准备2.JDBC操作数据库表步骤 四、代码优化1.简单优化2.with-resources探讨 总结 前言 &#x1f4dc; 本系列教程适用于JavaWeb初学者、爱好…

小程序中的页面配置和网络数据请求

页面配置文件和常用的配置项 1.在msg.json中配置window中的颜色和背景色 "navigationBarBackgroundColor": "#efefef","navigationBarTextStyle": "black" 2.可以看到home中的没有发生变化但是msg的发生变化了&#xff0c;这个和前面的…

【STM32RT-Thread零基础入门】 7. 线程创建应用(多线程运行机制)

硬件&#xff1a;STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线 文章目录 前言一、RT-Thread相关接口函数1. 获取当前运行的线程2. 设置调度器钩子函数 二、程序设计1. 头文件包含及宏定义2. 线程入口函数定义3. main函数设…

神经网络简单理解:机场登机

目录 神经网络简单理解&#xff1a;机场登机 ​编辑 激活函数&#xff1a;转为非线性问题 ​编辑 激活函数ReLU 通过神经元升维&#xff08;神经元数量&#xff09;&#xff1a;提升线性转化能力 通过增加隐藏层&#xff1a;增加非线性转化能力​编辑 模型越大&#xff0c;…

【分布式技术专题】「分布式ID系列」百度开源的分布式高性能的唯一ID生成器UidGenerator

UidGenerator是什么 UidGenerator是百度开源的一款分布式高性能的唯一ID生成器&#xff0c;更详细的情况可以查看官网集成文档 uid-generator是基于Twitter开源的snowflake算法实现的一款唯一主键生成器(数据库表的主键要求全局唯一是相当重要的)。要求java8及以上版本。 snow…

YOLO目标检测——动漫头像数据集下载分享

动漫头像数据集是用于研究和分析动漫头像相关问题的数据集&#xff0c;它包含了大量的动漫风格的头像图像。动漫头像是指以动漫风格绘制的虚构人物的头像图像&#xff0c;常见于动画、漫画、游戏等媒体。 数据集点击下载&#xff1a;YOLO动漫头像数据集50800图片.rar