热力学第二定律中的悖论 | 集智百科

48ab0ca504488ebf81a84c209c74a6d3.png

来源 :集智百科

目录

一、起源

二、时间之箭

三、动力系统

四、波动定理

五、大爆炸

六、编者推荐

七、百科项目志愿者招募

洛斯密特悖论,也被称为可逆性悖论,不可逆性悖论,或者说是一种反对意见,它认为不可能从时间对称的动力学中推导出一个不可逆的过程。这使得(几乎)所有已知的低级基本物理过程的时间反演对称性与任何依据描述宏观系统行为的热力学第二定律进行推断的努力相矛盾。这两个原则都是物理学中公认的原则,有着可靠的观测和理论支持,但它们似乎相互冲突,因此产生了悖论。

起源


约瑟夫·洛斯密特Josef Loschmidt的批评是由玻尔兹曼Boltzmann的H定理引起的,该定理运用动力学理论来解释当气体分子被允许碰撞时,来自非平衡状态的理想气体的熵的增加。1876年,Loschmidt指出,如果一个系统从时间t0到时间t1再到时间t2有一个运动,导致H随时间的变化而稳定减少(熵增加),那么,通过逆转所有的速度发现,在t1处有另一个系统允许的运动状态,这个状态下H一定会增加。这揭示了玻尔兹曼的一个关键假设--分子混沌,或者说,斯托斯扎哈兰茨(Stosszahlansatz),即所有粒子速度完全不相关,并不遵循牛顿动力学。人们会断言潜在的相关性并不吸引人,因此决定忽略它们;但如果这样做,就改变了概念体系,通过这一特别的行动注入了时间不对称的因素。


运动的可逆定律无法解释为什么我们的世界此刻处于一个相对较低的熵状态(与宇宙热寂的平衡熵相比) ,并且在过去处于更低的熵状态。

在洛斯密特之前

1874年,也就是洛斯密特论文发表的前两年,威廉 · 汤姆森William Thomson为第二定律辩护,反对时间反演的异议。

时间之箭


任何有规律地在时间的前进方向上发生但很少或从来没有在相反的方向上发生的过程,例如在一个孤立的系统中熵的增加,定义了物理学家所说的自然界中的时间之矢an arrow of time 。这个术语仅指对时间不对称性的观察; 它并不意味着对这种不对称性做出解释。洛斯密特悖论等价于这样一个问题: 在给定时间对称基本定律的情况下,怎么可能存在一个热力学的时间箭头? 因为时间对称性意味着,对于任何符合这些基本定律的过程,一个看起来似乎是倒放第一个过程的胶片的逆向版本也将与同样的基本定律相容,甚至如果人们从该系统所有可能的状态的相空间中随机挑选系统的初始状态,也同样有可能(相容)。

虽然物理学家描述的大多数时间之矢都被认为是热力学之矢的特殊情况,但也有少数被认为是不相关的,比如宇宙学的时间之矢是基于宇宙正在膨胀而不是收缩这一事实,以及粒子物理学中的一些过程实际上违反了时间对称性,而它们却遵守一种被称为CPT对称性的相关对称性。在宇宙学之矢的例子中,大多数物理学家认为,即使宇宙开始收缩,熵也会继续增加(尽管物理学家托马斯•戈尔德(Thomas Gold)曾提出过一个模型,模型里的热力学之箭在这个阶段会逆转)。在违反粒子物理学中的时间对称性的情况下,它们很少发生,而且只知道涉及少数几种介子粒子。此外,由于CPT对称性,时间方向的逆转相当于将粒子重命名为反粒子,反之亦然。因此,这不能解释洛斯密特悖论。

动力系统


目前的动力学系统研究为从可逆系统中获得不可逆性提供了一种可能的机制。其中心论点是基于这样一种说法,即研究宏观系统动力学的正确方法是研究微观运动方程所对应的转移算子。因此,有人认为,转移算子不是一元的(即不可逆的),而是具有严格小于1的特征值;这些特征值对应的是衰减的物理状态。这种方法充满了各种困难; 它只适用于少数几个完全可以解决的模型。

用于研究耗散系统的抽象数学工具一般包括混合、游走集和各态经历理论的定义。

波动定理


处理洛斯密特悖论的一种方法是波动定理,由丹尼斯·埃文斯Denis Evans和黛布拉·塞尔斯Debra Searles以启发式的方式导出,它给出了一个数值上的估计,即一个远离平衡的系统在一定时间内耗散函数(通常表示类似熵的性质)为特定值的概率。[4]该结果是在精确的时间可逆动力学运动方程和普遍因果命题下得到的。由动力学是时间可逆的事实,可以推导出波动定理。在澳大利亚国立大学由伊迪丝·塞维克Edith M.Sevick等人利用光学镊子仪器进行的实验室实验中,已经证实了该定理的定量预测。该定理适用于这样的瞬态系统,它最初可能处于平衡状态,然后离开平衡(如Sevick等人的第一个实验)或处于其他一些任意的初始状态,包括向平衡状态的弛豫。对于始终处于非平衡稳定状态的系统,也有一个渐进结果。


在波动定理中,有一个关键点与Loschmidt构建悖论的方式不同。Loschmidt考虑的是观察到单一轨迹的概率,这类似于调查观察到相空间中单个点的概率。在这两种情况下,概率总是零。为了能够有效地解决这个问题,必须考虑在相空间的一个小区域中的一组点或者一组轨迹的概率密度。波动定理考虑的是最初处于相空间无限小区域的所有轨迹的概率密度。这直接导致了在正向或反向轨迹集中找到轨迹的概率,这轨迹取决于初始概率分布以及随着系统演化所做的耗散。正是方法中的这一关键差异,使得波动定理能够正确解决这一悖论。

大爆炸


处理洛斯密特悖论的另一种方法是把第二定律看作是一系列边界条件的表达,在这些边界条件中,我们的宇宙时间坐标的起点是低熵的: 大爆炸。从这个角度来看,时间之矢完全是由远离大爆炸的方向决定的,一个具有最大熵大爆炸的假设宇宙将没有时间之矢。宇宙膨胀理论试图解释早期宇宙为什么有如此低的熵。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

81091bedbce72b923e37ab3c42aca009.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482926.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

操作系统学习笔记-2.1.3进程控制

操作系统学习笔记-2019 王道考研 操作系统-2.1.3进程控制 文章目录3.进程控制3.1知识概览3.2 基本概念3.2.1什么是进程控制?3.2.2如何实现进程控制?3.3进程控制相关的原语3.4思维导图3.进程控制 3.1知识概览 3.2 基本概念 3.2.1什么是进程控制&#xf…

消息队列---消息模型及使用场景

消息队列 消息对列是一个存放消息的容器,当我们需要消息的时候就从消息队列中取出消息使用。消息队列是分布式系统中重要的组件,使用消息队列的目的是为了通过异步处理提高系统的性能和削峰值,降低系统的耦合性。目前使用较多的消息队列有Act…

谷歌机器智能大牛:AI模型要真正理解人类语言,关键是「序列学习」

来源:新智元编辑:David如果计算机给了你所有正确的答案,是否意味着它和你一样了解世界?这是人工智能科学家几十年来一直争论不休的谜题。随着深度神经网络在与语言相关的任务中取得了令人瞩目的进步,关于理解、意识和真…

操作系统学习笔记-2.1.4进程通信

操作系统学习笔记-2019 王道考研 操作系统-2.1.4进程通信 文章目录4进程通信4.1知识总览4.2前置知识:什么是进程通信?4.3共享存储4.4 管道通信4.5消息传递4.6小结4进程通信 4.1知识总览 4.2前置知识:什么是进程通信? 4.3共享存储…

滴水课后作业(1-5)

滴水2015-01-12 1、231 成立吗?说明理由。 解题:上面式子由 3个符号组成,那么起码得用3进制以上的进制表示 三进制:2(0),3(1),1(2)   012不成立…

李德毅院士《探索新一代人工智能产业发展》

来源:AI城市智库中国工程院院士、CAAI名誉理事长、主线科技首席科学家李德毅作为大会嘉宾登台发表重磅演讲:《探索新一代人工智能产业发展》,就新一代人工智能的发展历史、产业现状、突破核心以及智能时代的中国方案发表了精彩观点。以下为李…

操作系统学习笔记-2.1.5线程概念和多线程模型

操作系统学习笔记-2019 王道考研 操作系统-2.1.5线程概念和多线程模型 文章目录5线程概念和多线程模型5.1知识概览5.2 什么是线程?为什么要引入线程?5.3引入线程及之后,有什么变化?5.4线程的属性5.5线程的实现方式5.6多线程模型5.…

函数式编程让你忘记设计模式

本文是一篇《Java 8实战》的阅读笔记,阅读大约需要5分钟。 有点标题党,但是这确实是我最近使用Lambda表达式的感受。设计模式是过去的一些好的经验和套路的总结,但是好的语言特性可以让开发者不去考虑这些设计模式。面向对象常见的设计模式有…

25年,100亿美元!人类「第二只眼」韦伯望远镜升空,寻找宇宙开天辟地那束光...

来源:新智元编辑:桃子 小咸鱼昨晚,历时25年研发,100亿美金打造的詹姆斯韦伯太空望远镜终于升空!它将成为人类的「第二只眼」,奔向离地球150万公里外的地方,不仅为了仰望星空,更是为了…

计算机网络学习笔记-1.2.2OSI参考模型(1)

计算机网络-2019 王道考研 计算机网络-1.2.2OSI参考模型(1) 文章目录2.OSI参考模型(1)2.1OSI参考模型(1)2.2ISO/OSI参考模型2.3ISO/OSI参考模型解释通信过程2.OSI参考模型(1) 2.1OS…

计算机网络学习笔记-1.2.3OSI参考模型(2)

计算机网络-[2019 王道考研 计算机网络-1.2.3OSI参考模型(2)(https://www.bilibili.com/video/av70228743?t6&p7) 文章目录3.OSI参考模型(2)3.1应用层3.2表示层3.3会话层3.4传输层3.5网络层3.6数据链路层3.7物理层3.8思维导图…

科技城|从专利布局看人工智能领域全球竞争与中国面临的挑战

来源:澎湃新闻作者:杜灵君(来自中国电子信息产业发展研究院)近年来,随着人工智能技术的突破,人工智能产业爆发式增长。全球各个国家为了抢占产业发展和技术变革主导权,争相出台政策、资本、核心…

计算机网络学习笔记-1.2.4TCP,IP参考模型和五层参考模型

计算机网络-2019 王道考研 计算机网络-1.2.4TCP,IP参考模型和五层参考模型 文章目录4.TCP,IP参考模型和五层参考模型4.1OSI参考模型与TCP/IP参考模型4.2OSI参考模型与TCP/IP参考模型的相同点4.3OSI参考模型与TCP/IP参考模型的不同点4.4五层参考协议4.4五…

从城市大脑到世界数字大脑 构建人类协同发展的超级智能平台

作者:远望智库数字大脑研究院院长,中国科学院虚拟经济与数据科学研究中心研究组成员,南京财经大学教授 刘锋(本文2021年12月发表于中国建设信息化)一.世界数字大脑产生的背景世界数字大脑与城市大脑的产生…

计算机网络学习笔记-1.2.3第一章总结

计算机网络-2019 王道考研 计算机网络-1.3第一章总结 文章目录3第一章总结3第一章总结

Science长文综述:通过空间斑图形成避免复杂系统崩溃

来源: 集智俱乐部作者:Max Rietkerk et al.译者:吕丽莎、胡一冰、李明章、郭瑞东、张澳审校:张澳、梁金编辑:邓一雪导语今天的地球处于人类世,人类活动对整个地球生态系统具有深刻影响。由于干旱和过度放牧…

计算机网络学习笔记-目录(更新日期:2020.4.8)

导语:文章合为时而著,歌诗合为事而作,我们学习,也自然需要知道我们为什么学这玩意儿~ 对于计算机网络这门课呢,大家如果是计算机专业的学生,那就是必上的一门科目啦,但是为什么要上呢?对于不同的…

达摩院发布:2022年十大科技趋势

来源:达摩院刚刚,阿里巴巴达摩院发布2022十大科技趋势,这是达摩院连续第四年发布前沿科技趋势预测。达摩院分析了近三年来的770万篇公开论文、8.5万份专利,覆盖159个领域,深度访谈近100位科学家,提出了2022…

Nature癌症“牵线木偶”理论:科学家找到了不易误伤健康细胞的“剪刀”

来源:生物通密歇根大学健康罗格尔癌症中心的研究人员证明,SWI/SNF复合物有助于获取癌基因可以结合的增强子,并驱动癌症中的下游基因表达。降解这个复合体的亚基会阻断癌基因。这一发现揭示了一种治疗由不同基因驱动的前列腺癌的新方法&#x…

JavaSE进阶学习笔记-目录汇总(待完成)

声明:此博客来自于黑马程序员学习笔记,并非商用,仅仅是为了博主个人日后学习复习用,如有冒犯,请联系qq208820388立即删除博文,最后,来跟我一起喊黑马牛逼黑马牛逼黑马牛逼 JavaSE进阶学习笔记-…