Gartner:AI和自动化将是新一代SASE的关键能力

92248637e70df527af9a522ae2be99ea.png

来源:安全内参

近年来,安全访问服务边缘(SASE)技术快速发展,得到了较广泛的行业应用。SASE架构通常包括了SD-WAN、FWaaS、安全Web网关、云访问安全代理(CASB)和零信任网络访问(ZTNA)等核心组件。而Gartner最新的研究预测,人工智能(AI)与自动化技术将成为新一代SASE服务的又一项关键技术,它会在减少误报、保护数据安全等多个应用场景下发挥更加重要的作用。

Gartner分析师表示:由于SASE厂商掌握着海量的网络和安全威胁数据,因此在应用AI和机器学习方面有着天然的优势。企业组织在选型新一代SASE服务时,可从以下方面考量其AI与自动化的应用性能:

1、减少错误告警

警报疲劳是切实存在的问题,安全分析师因每天要处理大量警报而焦头烂额。调查显示,60%的专业人员表示每天收到500多个云安全警报,巨额工作量导致55%的受访者每天或每周都错过重要警报。将AI用于安全和事件异常检测以及对事件进行分类,其主要好处是加快了检测速度,同时大幅减少了误报。

2、网络分析和修复

如今企业纷纷转向智能网络,利用AI和机器学习做出决策,尽可能减少人工干预。在SASE环境下,这可能体现为自动分析网络流量。利用AI的SD-WAN可以跟踪流量峰值以避免性能问题。如果未达到服务级别,基于AI的网络可以转移工作负载或转移用户访问权限。据Gartner研究,2021年,部署SD-WAN的企业中不到5%使用AI功能实现自动化运营,到2025年这个比例将达到40%。

3、智能化运维

AI的另一个重要应用场景是智能化运维。通过智能化运维,可能让安全管理者更好了解网络设备的运营状态,对可能发生故障的设备提前感知,这样就可以让支持人员或维修人员提前做出准备。智能化运维目前已成为AI技术最成熟的应用领域,特别是在智能制造等行业场景中。

4、用户行为分析和异常行为检测

SASE厂商可访问大量数据,利用这些数据为人和设备在网络中应有的行为建立基准,这有助于身份验证和发现可疑活动。从网络的角度来看,需要确保连接到网络的实体的身份真实有效。AI模型可以快速识别连接到网络的端点类型,分析访问网络的每个客户端,并让安全专家了解网络上的情况。

5、数据防泄漏

数据防泄漏并不是SASE的核心功能,却是许多SASE厂商最近添加或正在推出的功能。它可以防止敏感数据被外部攻击者或恶意内部人员从公司的系统中泄露出去。结合AI,数据丢失预防工具可以识别故意混淆、企图绕过基于关键字的简单过滤器的数据。

内部威胁是当今企业面临的最大问题之一。离职员工往往可以获取敏感信息,比如设计文档和代码。恶意内部人员可以窃取公司数据,对外共享。AI不仅可以阻止数据离开公司,还能拒绝访问数据。我们看到SASE厂商正在加入数据丢失防护功能,从而阻止恶意用户窃取并泄露数据。

6、识别和预防高级威胁

传统的入侵检测系统擅长检测已知漏洞,可以防止相同的攻击再次发生,但响应新威胁的速度可能很慢。通过使用所有的已知漏洞训练AI模型,可以立即发现并阻止尚未发生的攻击,许多新攻击是之前已知的威胁的不同版本。一些威胁受益于监控和自动缓解机制,而更复杂的攻击仍需要有劳安全专家处理。安全方面肯定会遇到误报,很可能需要一些资深技术人员分析误报。

7、DDoS 攻击缓解

不安全的联网设备持续增多,组织改用高速5G网络,以及服务化的分布式拒绝攻击产业迅猛发展,让企业面临更严峻的DDoS 攻击威胁。对于DDoS之类的攻击,组织需要拥有能非常迅速的应对能力。DDoS攻击缓解是SASE厂商们提供的常见功能,也是用户相信AI能处理好的最简单的任务之一。

8、协助安全分析师

如果AI能处理重复性的常规任务,安全分析师可以将时间花在较复杂的问题上。AI可以了解安全分析师的习性和偏好,帮助他们更高效地完成日常工作,从而对安全分析师的工作大有助益。

但AI目前并没有准备好在没有人参与的情况下独立发挥功效。AI在几乎所有的SASE解决方案中仍处于早期阶段。长远来看,尽管AI很有价值,但组织仍需要优秀工程师在关键性问题上人工做出可靠的决策。

参考链接:

https://www.networkworld.com/article/3657610/how-sase-uses-ai.html

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

12b4558c62ce4ce3f367bd0f25cb3954.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482197.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MIPS指令与MIPS汇编语言

文章目录1 MIPS简介2 MIPS指令系统的特点3 MIPS寄存器4 MIPS指令格式4.1 R-Type型指令4.2 l-Type型指令4.3 J-Type型指令4.4 三类指令小结5 MIPS例题6 MIPS过程调用6.1 过程调用和栈6.2 MIPS中栈的实现6.3 栈帧的概念6.4 MIPS中的过程调用(假定P调用Q)6.…

DeepMind爆发史:决定AI高峰的“游戏玩家”|深度学习崛起十年

来源:OneFlow社区翻译:刘晓祯、沈佳丽、胡燕君、许晨阳、周亚坤很少有人会否认,过去十年,AI领域最耀眼的明星组织当属DeepMind,没有之一。那个震动世界的高光时刻发生在2016年3月的一天,AI选手AlphaGo击败了…

链队的介绍与实现

文章目录1 链队定义2 链队基本操作3 代码实现1 链队定义 队列的链式存储结构简称为链队列,它是限制仅在表头删除和表尾插入的单链表。显然仅有单链表的头指针不便于在表尾做插入操作,为此再增加一个尾指针,指向链表上的最后一个结点。 type…

二叉树介绍与代码实现

文章目录1 树的基本概念1.1 树的形式定义1.2 树的递归定义1.3 树的基本术语1.4 二叉树的递归定义1.5 存储方法1.6 满二叉树VS完全二叉树2 二叉树的性质3 代码实现1 树的基本概念 1.1 树的形式定义 T{D,R} D为树T中包含n个结点的有限集合,R为树中结点之间…

2022先进计算七大趋势

来源:CBInsights 中文编辑:蒲蒲作为智能社会的底座、数字经济的引擎,算力的重要性已经被提到一个前所未有的高度。当下,算力的提升仍然面临着来自多个维度的挑战。不论是硬件层面还是架构层面,算力发展都亟需变革。先进…

类脑计算将何去何从?

来源:内容由半导体行业观察(ID:icbank)编译:nature.摘要类脑计算新技术有望通过完全不同的方式处理信息,能效极高,并能处理我们加速产生的大量非结构化和嘈杂的数据。为了实现这一承诺&#xff…

1 计算机网络体系结构与OSI参考模型

文章目录1 计算机网络概述1.1 计算机网络概念1.2 计算机网络的分类2 OSI 七层参考模型应用层表示层会话层传输层网络层数据链路层物理层3 OSI参考模型与网络排错4 OSI参考模型与网络安全5 TCP/IP协议和OSI参考模型1 计算机网络概述 1.1 计算机网络概念 计算机网络概念&#xf…

一个故事讲完 CPU 的工作原理

来自:知乎 作者:柳两丛 www.zhihu.com/question/40571490/answer/718942643上二年级的小明正坐在教室里。现在是数学课,下午第一节,窗外的蝉鸣、缓缓旋转的吊扇让同学们昏昏欲睡。此时,刘老师在黑板上写下一个问题&a…

2 计算机网络性能指标

文章目录速率带宽吞吐量时延时延带宽积往返时间网络利用率速率 连接在计算机网络上的主机在数字信道上传送数据位数的速率,也称为data rate或bit rate。 单位是b/s, kb/s, Mb/s, Gb/s. 比特(bit)是计算机中数据量的单位,也是信息论…

Anthropic 公司研究人员从简单的 AI 中获得关于 Transformer 的新理解

来源:ScienceAI编辑 :橘子皮在过去的两年里,人工智能程序的语言流畅度达到了惊人的水平。其中最大和最好的都是基于 2017 年发明的称为 Transformer 的架构。它以方程式列表的形式作为程序遵循的一种蓝图。但除了这个简单的数学大纲之外&…

3 物理层 数据通信基础知识 奈氏准则与香农定理 物理层传输介质 信道复用技术

文章目录1 物理层基本概念2 数据通信的基础知识2.1 典型的数据通信系统模型2.2 与通信相关的几个术语2.3 有关信道的几个概念2.4 基带(baseband)信号和带通(band pass)信号2.5 几种最基本的调制方法2.6 网卡传送信号时的编码格式2.7 信道的极限容量2.8 信道能够通过的频率范围2…

向真实世界应用进军:持续自监督学习的挑战

来源:图灵人工智能编译:OGAI编辑:陈彩娴在 Yann Lecun 等人的推动下,自监督学习成为了深度学习领域最受瞩目的技术之一。互联网世界源源不断产生的数据流无疑是充分发挥自监督学习能力的最佳土壤。然而,将自监督学习应…

人类“超级大脑”背后的规模法则

来源:集智俱乐部作者:郭瑞东 编辑:邓一雪摘要不同动物的大脑具有不同形状和大小。大自然赋予像人类这样脑容量大的灵长类动物比例较大的大脑皮层。然而,比较研究表明,分配给大脑白质连接(大脑区域间长距离沟…

Meta AI 宣布对人脑和语言处理进行长期研究

来源:ScienceAI编辑:绿萝人类的大脑长期以来一直是一个难题——它是如何发展的,它如何继续进化,它被开发和未开发的能力。人工智能 (AI) 和机器学习 (ML) 模型也是如此。正如人类大脑创建的 AI 和 ML 模型日益复杂一样&#xff0c…

10年100亿!“新基石研究员”项目正式发布

来源: 中国科学报文:《中国科学报》记者 赵广立4月30日,《中国科学报》获悉,一项总投入达100亿元、面向基础研究领域的社会资助项目——“新基石研究员项目”正式发布。在国家有关部门的指导下,“新基石研究员项目”由…

代表地球文明精髓的E=mc²,为什么被称为“死亡方程式”

来源:大数据文摘有这样一条方程式,原腾讯副总裁吴军博士说,如果地球毁灭,要在一张名片上写下地球文明的全部精髓,他会写下三个公式,其中就包含这个方程式;搜狐CEO张朝阳专门开了堂线下物理课&am…

北交桑基韬:“超”人的机器学习,非语义特征的得与失

来源:AI科技评论作者:桑基韬整理:维克多人工智能目前最大的“拦路虎”是不可信赖性,以深度学习为基础的算法,在实验室环境下可以达到甚至超过人类的水平,但在很多实际应用场景下的性能无法保证,…

手把手教你搭建一个中式菜谱知识图谱可视化系统

手把手教你搭建一个中式菜谱知识图谱可视化系统中式菜谱知识图谱1、系统功能2、先来看看效果实体间关联关系及实体信息显示不同类型实体开关显示搜索功能展示3、系统实现流程3.1 数据爬取3.2 D3可视化中式菜谱知识图谱 今天分享一个自己从数据爬取到d3可视化的中式菜谱知识图谱…

AI数字人未来十大展望

来源 :商汤智能产业研究院编辑 :刘振航从电影中逼真的CG人物,到能够与我们面对面进行互动的智能服务助手,数字人会经历几级进化?数字人正在从有颜无智的“CG数字模特”,进化为可提高生产力、驱动创新服务的…

知识图谱最新权威综述论文解读:开篇部分

论文地址:http://arxiv.org/abs/2002.00388 这篇综述是数据科学权威 Philip S. Yu 团队对知识图谱领域的最新综述论文,论文从知识图谱的发展历史、知识表示学习、知识获取、知识应用、未来研究方向等方面描述了知识图谱的全局。 首先,咱们先…