一文梳理类脑计算的前世今生 | 中科院自动化所研究员李国齐

f0298e11635b7a10981f85e346f9ebb8.png

来源:智源社区

整理:王光华

编辑:李梦佳

导读:众所周知,人类大脑活动是复杂而连续的动力学过程,其复杂程度远超当前算力资源所能模拟的上限。大脑约有1000亿个神经元,100万亿个突触,单个突触长度约10-1000微米。假设每1微米突触用1个 微分方程近似,初略估算人类大脑约具有1000万亿-10亿亿参数。

类脑计算的核心在于借鉴生物神经系统的信息处理模式或结构,进而构建相应的计算理论、芯片体系结构以及应用模型与算法,类脑计算被认为是后摩尔时代最为重要的发展方向之一,或有可能成为未来智能计算的突破口。


在智源研究院青源Talk第16期活动中,中科院自动化所李国齐研究员做了题为“类脑计算的研究进展和展望”的报告分享。李国齐首先介绍了类脑计算的基本概念,而后从类脑计算系统的模型算法、软件、芯片以及数据等多个方面介绍了当前类脑计算系统的最新研究进展,最后对类脑计算系统的发展趋势进行总结与展望。

作者简介 :国齐,中国科学院自动化所研究员,博士生导师,北京智源人工智能研究院青年科学家。李国齐在Nature、Nature Communications、Proceedings of the IEEE、IEEE TPAMI等期刊和ICLR、NeurIPS、AAAI、CVPR等会议上发表论文 150余篇;出版国内类脑计算领域早期学术专著1部;论文在 Google 学术上被引用 4500余次。2017 年入选北京市自然科学基金优秀青年人才,2018 年获得中国指挥与控制学会科学技术一等奖,2019 年入选北京智源人工智能研究院“智源学者”,2021年获得福建省科技进步二等奖,2021 年获得北京市杰出青年基金资助,2022年入选中科院“百人计划”;其参与的类脑芯片理论、架构和工具链的工作曾入选2019年中国科学十大进展和2020年世界人工智能十大进展。

01

什么是类脑计算?

类脑计算是近些年来崛起的新兴研究领域,与人工智能、机器学习等领域类似,很难对其进行准确定义,目前业内尚没有普遍认可的类脑计算概念定义。

李国齐指出,类脑计算的描述性定义为“指受人脑信息处理方式启发,以更通用的人工智能和高效智能边缘端/云端为目标构建信息系统的技术总称”。类脑计算希望融合脑科学、计算神经科学、认知科学甚至统计物理等学科的知识来解决现有传统计算技术的一些问题,进而构建更加通用、高效、智能的新颖信息系统。

63f779947fe256f2e4199a9e5e49a762.png

狭义类脑计算是指神经形态计算,主要是研制神经形态芯片以支持源自计算神经科学的脉冲神经网络(Spiking Neural Networks, SNN);广义类脑计算也包括存内计算、忆阻器芯片甚至研制AI 芯片以支持传统的人工神经网络(Artificial Neural Networks ,ANN)。因此,类脑计算的研究与发展与人工智能一样也需要从模型算法、软件、芯片和数据等各个方向协同展开。

54e096a92920188c2cbf1a8d7c3da047.png

02

类脑计算模型:突破神经科学与AI的鸿沟

当前,神经科学与人工智能之间存在着巨大鸿沟,神经科学侧重于重构大脑内部的精细结构和生理细节,人工智能则侧重于通过对神经结构进行数学抽象以实现计算的高效性。

c2849498a9ff48c8a84c449a2d5be0aa.png

因此,人工智能和神经科学如何交叉融合成为一个艰巨挑战。类脑计算中,脉冲神经网络兼具了生物合理性和计算高效性,或可以为人工智能提供新范式。简单地,可以认为SNN = ANN + Neuronal Dynamics。如何寻找兼具生物合理性与计算高效性的脉冲神经元模型,以及如何建立脉冲神经元模型与AI任务之间的关系是类脑计算领域的核心问题。

52697e55f42d42728ddf84760734ed41.png

当前,SNN普遍采用LIF神经元作为构建神经网络的基础单元。原因在于,LIF神经元是一种典型的综合模型,既具备IF模型的简单易用性,又能像H-H神经元模型那样模拟生物神经元丰富的生理学特性。

a1b9214763368c0fedab7a094cab3a6a.png

众所周知,ANN和SNN各具特点,互有所长。ANN能够充分利用现有计算机的计算特性,以神经元状态表示信息,在空间域传递信息,主要操作为密集矩阵向量乘法,相比之下,SNN采用脉冲序列表示信息,在空间域和时间域两个维度传递信息,主要操作为事件驱动的稀疏加法,兼具计算高效性和生物可信性。

aa567c292eb12190b1d0d80ef76bdeee.png

03

类脑学习算法

与ANN训练相比,SNN的高效训练面临着诸多问题与挑战,例如脉冲神经元中复杂的时空动力过程、脉冲神经元之间传递的脉冲信息不可导、脉冲退化和训练精度损失等。当前,SNN训练方法主要包括无监督学习、间接有监督学习和直接有监督学习三类。这些训练方法尝试从不同的角度解决上述问题和挑战。

1.基于STDP的无监督学习

8f16a79168e425864df3fbaa6aaec4e8.png

基于脉冲时间依赖的突触可塑性 (Spike Timing Dependent Plasticity, STDP)能够控制大脑神经元之间权重连接更新,是一种典型的无监督学习方法。通俗的说,两个神经元的发放时间越近,他们之间的绑定关系就越紧密。如上图所示,当两个神经元先后激活时,具备紧密先后关系的双方会加强联系,而具备相反关系的双方就会削弱联系,因此神经元之间往往建立单向加强联系。

如果两个神经元同时激活,则他们与共同的下游神经元之间形成了更加紧密的联系,这样两者为同级神经元,且相互之间具备间接关系。例如,通过STDP规则结合Winner-Take-All(WTA)构成的学习模型是一种简单有效的无监督学习方式。

具体地,在输入层将图片转换为脉冲序列(脉冲发放率正比于像素值),神经元以全连接形式前向连接,接受兴奋性输入,并采用STDP规则更新,并与抑制性神经元后向一对一连接,对其产生侧向抑制 (即soft WTA),并通过自适应阈值平衡脉冲发放率。

STDP模型通过局部调整规则进行学习,在神经形态芯片上容易进行分布式实现并具备在线学习能力。但是,局部突触可塑性不足以解释突触个体的改变如何协调神经系统的整体目标的实现。同时,李国齐也指出,这种无监督学习训练方法存在着难以获得高性能网络,无法在大规模深度神经网络中使用等问题。

2.基于ANN转SNN的间接有监督学习

83c53da094fa947c02c89717f19bddca.png

ANN-converted SNN方法是指训练一个ANN模型,而后将学习完成后的ANN权重迁移到具有相同结构的SNN中。其基本思想是,利用SNN平均脉冲发放率来近似表示ANN中的 ReLU激活值。

因此,ANN-converted SNN方法存在着模型精度与模型仿真步长T之间的tradeoff问题。该方法利用有监督信号在原始ANN模型中进行梯度反向传播训练,然后将其转换成SNN模型,因此是一种间接有监督学习。

ANN-converted SNN方法可扩展性强,容易将新出现的或大规模的ANN网络结构转换为相应的SNN版本。一般地,仿真时间步数T越大,SNN平均脉冲发放率越接近ANN中的激活值,两种模型之间的误差也就越小,从而实现ANN-SNN几乎“无损”转换。但过长的时间步数T会导致训练和推理效率下降,SNN的功耗优势也随之降低。此外,李国齐指出,由于这种方法本质上是利用SNN去逼近ANN,在转换的过程中会丢失SNN中可利用的时间依赖信号,因此可能会导致其应用场景相对受限。

3.SNN直接有监督学习的发展

9cee36d25087b48be52e21989c48bedd.png

为避免上述两种训练方法的局限性,解决SNN无法有效训练的难题,李国齐及其团队较早的提出STBP(Spatio-Temporal Backpropagation)等SNN直接训练方法。

直接训练算法难点在于SNN复杂的时空动力学特性及脉冲发放不可微分问题。李国齐团队提出的解决思路是,将脉冲神经元的微分方程形式转换为便于计算机仿真的差分方程形式,将信息沿时间、空间空维度同时展开,并采用脉冲梯度逼近方法。由于近似替代函数保留了脉冲发放的“非线性特征”,其梯度逼近曲线具有一定的鲁棒性。

40051433bb3a406495f69339fdd2f7ea.png

STBP虽然解决了SNN网络中进行反向传播训练的梯度替代问题,但其仍然只能训练不超过10层的小规模网络。其中主要问题在于,一旦网络加深,先比较于ANN,脉冲神经元的二进制激活方式及其复杂的时空动态更容易带来网络的梯度消失或爆炸问题。

通过进一步分析SNN中的时空动态特性可知,建立神经元膜电势和阈值之间的平衡,以获得一个合适的网络脉冲发放率对网络的性能至关重要。过低的发放率可能会导致有效信息不足,而过高的发放率则会降低SNN网络对输入的区分度。

因此,李国齐团队进一步提出了结合脉冲神经元阈值的BN算法,即Threshold-dependent BN方法(TDBN),缓解了制约SNN的规模瓶颈问题,首次将SNN的网络规模提升至50层,在ImageNet等大规模数据集上取得具有竞争性的性能,并证明了该方法可缓解深度SNN的梯度消失与爆炸问题。

250749d4cdc5e3cf6e483e89102b39cc.png

尽管TDBN提升了SNN的规模,但相对于传统ANN中动辄数百层的深度网络,性能仍然捉襟见肘,不足以在大规模数据集上与ANN进行竞争。为了进一步提升SNN的网络表达能力,扩大网络规模从而提升任务性能,借鉴经典的ResNet结构是似乎一种可行的方法。

但是,直接复制ResNet结构到SNN中(Vanilla Res-SNN)存在着脉冲退化问题,即网络越深,精度越低。因此,李国齐团队提出了一种将LIF神经元放置在残差块中,并在不同层神经元的膜电势之间建立shortcut的新颖Ms-Rse-SNN结构。并利用dynamical isometry理论证明了所提出的结构不存在脉冲退化问题。在相对广泛的范围内解决了大规模SNN直接训练问题(482层 CIFAR-10,104层 ImageNet),后者取得Top-1 76%分类准确率的SOTA结果。

f435fb2d47cd49f88fb709a77c8f76b4.png

此外,根据SNN处理数据的不同,采用data-dependent的处理方式,可以为直接训练SNN在一些任务中带来额外的性能增益。例如,在神经形态视觉任务中,事件流数据往往具有稀疏、不均匀特性。

根据这一观察,李国齐团队提出了一种时间注意力脉冲神经网络,根据事件流在不同时刻的输入信噪比,结合时间注意力机制,使用SNN以数据驱动的方式来进行任务处理,可以在进一步降低网络能耗的基础上带来性能提升。实验结果表明,即使去掉一半的输入,SNN的性能基本能够维持不变或略有提升。总而言之,当前SNN已经进入大规模深层模型和算法的发展阶段,并将在传统人工智能领域中多种下游任务得到进一步的应用。

c14845f4282753ed2d560dc09fffbc9c.png

04

类脑计算软件

968f832e7d72ad38ae256547936923aa.png

类脑计算软件框架与工具通常包括神经形态芯片工具链、神经系统仿真模拟和SNN学习框架等三个方面的内容,具体可参考清华大学张悠慧教授在IEEE Transactions on High Performance Computing的综述论文观点。

神经形态芯片工具链目前尚处于早期阶段,存在软件与硬件紧密耦合,通用性、自动化程度不高,使用便捷性差等许多问题。神经系统软件仿真框架能够详细模拟生物神经网络,但要求用户具有一定的计算神经科学基础。

现有的仿真工具软件框架通常用C语言开发,缺乏跨平台能力,也缺乏对各种后端硬件的深度优化的支持。并且,这些软件通常为CPU和GPU等商业硬件而设计,并不支持不同类型的神经形态芯片。SNN学习框架的目标是,将深度学习框架开发的便利性与SNN的特点相结合,充分利用深度学习领域的各种资源,对SNN网络训练进行加速,相关工作基本处于前期并且不够稳定,更无法适应不同的软件和硬件接口,即使基于GPU架构开发也难以充分利用SNN本身的特性进行加速。

05

类脑计算芯片

9c44994e6241bc8dd727248e76724253.png

从功能角度看,类脑芯片主要分为四类:


主要支持人工神经网络(TPU、寒武纪、华为昇腾等)的深度学习加速器

主要支持脉冲神经网络(TrueNorth、Loihi、达尔文等芯片)的神经形态芯片

支持人工/脉冲神经网络的异构融合芯片(Tianjinc芯片);

以及支持神经元编程的脑仿真模拟芯片(SpiNNaker、 ROLLS、 Loihi等芯片 )和具备低时延、高动态的神经形态相机为代表的感知芯片

类脑芯片的体系架构包括主流深度学习加速器采用的存算分离架构,主流众核去中心化架构芯片的近存计算架构,以及存内计算芯片、忆阻器芯片等所采用的存算一体架构。从芯片设计的角度来看,采用路由器连接的多核架构的芯片的可扩展性更好,多个功能核独立工作,核间周期性地同步和共享数据。因此可支持的网络规模更大,应用范围更广的SNN。

采用单纯数字信号的小规模单核芯片可以采用存内计算进行矩阵向量乘,具备同步、异步设计流程,往往具备较高的能效和较低的静态功耗,且更便于技术迁移,但神经元与突触的规模受限。数模混合小规模单核芯片采用数字异步脉冲路由,利用存内数字计算方法进行矩阵向量乘法,采用模拟膜电位进行激活与更新,因此能效最高,但也存在神经元与突触数量少和设计不方便等问题。

06

类脑计算数据

66938708dceef41779fab6a5de7d919d.png

众所周知,深度学习发展四要素为算法、算力、开发工具以及大规模的数据。在深度学习领域,成百上千个开源数据集覆盖分类、检测、跟踪、自然语言等,极大地促进了深度学习的繁荣。

相比之下,类脑数据集十分匮乏,现有的数据集主要包括四类:

第一类是通过转换算法将ANN数据集转变为事件信号数据集,典型数据集包括基于ImageNet转换而来的ES-ImageNet,基于UCF101转化的事件信号数据集ES-UCF101,基于BDD100K转化的事件信号数据集BDD100K-DVS等;

第二类是利用神经形态相机DVS将图像或视频数据库转化为事件数据集,比如N-MNIST、CIFA10-DVS等数据集;

第三类是通过神经形态相机DVS直接拍摄获取的数据集,比如DVS-Gesture、PKU-DDD17-CAR、Gen1 Detection、1Mpx Detection、PKU-DAVIS-SOD等;最后一类是其它类型的类脑数据集,比如EEG数据集、脑机接口(BCI)相关的数据集、帧数据和事件的混合数据等。

07

类脑系统发展趋势

最后,李国齐结合自己的思考总结了类脑计算的未来发展趋势,并对类脑系统框架进行了总结。

在模型算法方面,不仅可以通过增加模型参数、网络深度或宽度使得SNN模型变大变强,更重要的提供向内增加神经元复杂程度的能力支撑,缩减神经科学与人工智能之间存在的鸿沟。因此,构造包含更丰富动力学的神经元模型、神经网络及对应的算法是未来的重要方向。

在类脑软件方面,如何提升SNN的研究生态是未来发展的必经之路,重要的方向包括神经形态工具链的软硬件去耦合、SNN训练加速框架、及高效的神经系统仿真和模拟等。在类脑数据方面,如何构建具备稀疏事件特征、具备丰富的时间尺度/空间尺度特征的大规模多模态混合数据集十分重要。

在类脑芯片方面,主要关注神经形态芯片如何进行更高效的感知、存储和计算,如何构建融合感存算一体化的计算系统。研究更高效的芯片架构、研制更具有类脑元素的芯片功能也是未来发展的重要方向。芯片架构上可以探索类脑芯片的分层存储体系、高效在线学习架构及其与其它硬件平台的高效兼容能力;芯片功能上可以探索如何融入更多的算子支持比如微分方程、线性方程求解,以及如何在算子层面上支持更类脑的神经元模型和网络结构等。

李国齐认为,类脑系统的总体框架包括类脑的模型、算法、软件以及芯片,并结合丰富类脑数据构造的计算系统,在人工智能领域可以朝着高效云端/边缘端类脑计算系统的构造方向发展,在脑科学领域可利用现有的超算服务器集群进行神经动力学的仿真和模拟,构建更为复杂的脑仿真和神经模拟系统。

358b126f1763d69fd4efa3b7313f6a20.png


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

99f4d8d461c3be68e7b693637ee960f9.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482151.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常识推理相关最新研究进展

以深度学习为代表的智能感知技术已经取得了突破性进展,并已在各行各业产生了巨大的价值。目前,人工智能的研究领域已经逐渐从感知智能向认知智能领域过渡,其中,深度学习无法解决的一个主要问题是常识推理问题。常识知识是人类智能…

全球半导体厂商TOP 10

来源:数据观综合编辑:蒲蒲近日,IC Insights 分析了全球主要半导体供应商(不含纯代工厂)的市场份额,并公布排名前十的半导体厂商排名。从分析情况来看,全球半导体市场份额越来越集中于排名靠前的…

常识知识在AI不同领域应用的最新研究进展

上期,我们一起学习了常识推理的最新研究进展。这次,我们一起来看看常识知识在AI不同的领域都有哪些应用,泽宇找到几篇最新或有代表性的研究和大家分享学习。 Commonsense Knowledge Aware Conversation Generation with Graph Attention Aut…

MIT 团队的新测试,将 AI 推理与人类思维进行比较

来源:ScienceAI编辑:萝卜皮人工智能获得洞察力和做出决策的方式通常是神秘的,这引发了人们对机器学习的可信度的担忧。现在,在一项新研究中,研究人员揭示了一种新方法,用于比较人工智能软件的推理与人类推理…

年末巨制:知识图谱嵌入方法研究总结

泽宇对自己的研究方向也就是知识图谱嵌入(KG Embedding)技术进行了总结,并制作了一套slides,力求让大家只看slides就可以理解并掌握知识图谱嵌入的相关知识和最新研究情况,包括知识图谱嵌入的基本概念、方法分类和经典…

吴恩达:未来十年,人工智能将向以数据为中心转变

来源:AI前线作者:Eliza Strickland译者:平川策划:凌敏本文最初发布于 IEEE Spectrum。吴恩达在人工智能领域可谓声名显赫。2000 年底,他与斯坦福大学的学生一起开创了使用图形处理单元(GPU)训练…

知识图谱最新权威综述论文解读:时序知识图谱部分

从最近一两年有关知识图谱的顶会论文中可以发现,越来越多的国内外研究者开始关注动态时序知识图谱,可见时序知识图谱已经成为了一大研究趋势,相信之后会有更多相关研究出来。因此,这期我们对综述论文的时序知识图谱部分接着进行解…

CACM观点:超越联邦学习,让AI跨越公司边界

来源:AI科技评论 编译:张泷玲、杨柳编辑:维克多今年1月份,苏黎世联邦理工学院的Stefan Feuerriegelc教授在 《Communications of the ACM》期刊上刊文“Artificial Intelligence Across Company Borders”,在文中教授指…

知识图谱最新权威综述论文解读:知识图谱应用部分

知识图谱在人工智能的许多领域都发挥了重要作用,综述论文的这一章引入多个最新的基于深度学习的知识驱动方法,主要包括的应用领域有自然语言理解,推荐系统和问答系统。 1 自然语言理解 知识感知的自然语言理解通过将结构化的知识注入一个统一…

知识图谱和专家系统、知识工程、数据库等概念的比较

知识图谱虽然是Google在2012年公布其开发的搜索引擎时提出的名词,但是知识图谱的雏形早在1960左右就已经出现,因此,知识图谱其实是很多相关技术继承发展的结果。并且,和知识图谱类似的还有好几个概念:专家系统、知识工…

CICC城市大脑专委会成功举办“城市大脑成熟度评估专家研讨会”

来源:中国指挥与控制学会2020年以来,城市大脑已成为科技领域的新热点。作为一个新兴的前沿科技领域,不同企业、不同城市对城市大脑的理解并不相同,在建设的过程中没有统一的建设规范和标准作为指导,从而导致不同企业建…

“知识图谱+”系列:知识图谱+图神经网络

最近有很多朋友联系泽宇说想了解一些知识图谱和图神经网络(GNN)结合的研究。那泽宇当然要满足朋友们的要求啊,本期泽宇从知识图谱的几个不同研究方向总结了结合GNN的经典研究,也和大家一起分享。所有内容是泽宇查阅了很多顶会论文…

周志华:“数据、算法、算力” 人工智能三要素,在未来要加上“知识”!

来源:AI科技评论作者:李雨晨 编辑:丛末在CCF-GAIR 2020 的人工智能前沿专场上,南京大学计算机系主任、人工智能学院院长、CCF会士、ACM、AAAI、IEEE、IAPR Fellow周志华教授以“反绎学习”为题发表了大会报告。周志华表示&#x…

“知识图谱+”系列:知识图谱+强化学习

泽宇个人一直认为强化学习是建模动态系统最好的方法之一,通过与环境的不断交互,在动作选择和状态更新的动态过程中逐渐达到优化目标。因此,本期泽宇将从知识图谱结合强化学习的角度介绍几个不同的研究方向的内容,包括知识图谱推理…

吴恩达 | 未来十年,人工智能将向以数据为中心转变

来源:IEEE Spectrum访者:吴恩达 计算机科学家吴恩达在人工智能领域可谓声名显赫。2000 年底,他与斯坦福大学的学生一起开创了使用图形处理单元(GPU)训练深度学习模型的先河,并在 2011 年共同创立了谷歌大脑…

给几句话就能生成分子,看见分子也能生成描述,神秘的Google X把多模态AI做成了黑科技...

来源:机器学习研究组订阅AIscience 领域近来有了诸多进展。设想一下,医生写几句话来描述一种专门用于治疗患者的药物,AI 就能自动生成所需药物的确切结构。这听起来像是科幻小说,但随着自然语言和分子生物学交叉领域的进展&#x…

MIT新发现:细胞在分裂前会把垃圾带走

来源:生物通 细胞可以利用这种策略清除有毒的副产品,给后代一个干净的环境。麻省理工学院(MIT)的研究人员发现,在细胞开始分裂之前,它们会进行一些清理,将似乎不再需要的分子排出体外。利用他们开发的一种测量细胞干质…

图灵测试其实已经过时了

来源:立委NLP频道图灵测试的实质就是要让人机交互在限定时间内做到真假莫辨。玩过GPT3的同学们都清楚,其实这一点已经做到了。从这个角度看,图灵测试已经过时了。区别人和机器,需要寻找其他的标准。今天就唠一唠正在风口上的预训练…

揭示世界本质的「机器科学家」,比深度神经网络还强?

来源:AI科技评论作者:Charlie Wood编译:王玥、刘冰一编辑:陈彩娴我们正处于“GoPro 物理学”的风口浪尖。无论摄像机聚焦于什么事件,算法都可以识别其中潜在的物理方程。2017 年,西北大学化学与生物工程系的…

AI 与合成生物学「联姻」的五大挑战:技术、数据、算法、评估与社会学

来源:ACM通讯编译:王玥编辑:陈彩娴在过去的二十年里,生物学发生了翻天覆地的变化,建立在生物系统上的工程成为了可能。赋予了我们细胞遗传密码(DNA)排序能力的基因组革命是这一巨大变化的主要推…