MIT 团队的新测试,将 AI 推理与人类思维进行比较

fb1fcd77d4caf8cebb8cedf415d46578.png

来源:ScienceAI

编辑:萝卜皮

人工智能获得洞察力和做出决策的方式通常是神秘的,这引发了人们对机器学习的可信度的担忧。现在,在一项新研究中,研究人员揭示了一种新方法,用于比较人工智能软件的推理与人类推理的匹配程度,以便快速分析其行为。

随着机器学习越来越多地在现实世界中得到应用,了解它如何得出结论以及它是否正确变得至关重要。例如,人工智能程序可能似乎准确地预测了皮肤病变是癌性的,但它可能是通过关注临床图像背景中不相关的印迹来做到这一点的。

「众所周知,机器学习模型难以理解。」麻省理工学院计算机科学研究人员、一项关于人工智能可信度的新研究的主要作者 Angie Boggust 说,「知道一个模型的决定很容易,但知道这个模型为什么做出这个决定却很难。」

bac607452159dd63cbf511911318a221.png

文献链接:http://shared-interest.csail.mit.edu/

理解 AI 推理的一种常见策略是检查程序所关注的数据的特征——比如图像或句子——以便做出决定。然而,这种所谓的显著性方法通常一次只能对一个决策产生见解,并且必须手动检查每个决策。人工智能软件通常使用数百万个数据实例进行训练,这使得人们几乎不可能分析足够多的决策来识别正确或不正确行为的模式。

「为人类用户提供工具来询问和理解他们的机器学习模型,对于确保机器学习模型可以安全地部署在现实世界中至关重要。」——Angie Boggust

现在,麻省理工学院和 IBM 研究院的科学家们创造了一种方法来收集和检查人工智能对其决策的解释,从而可以快速分析其行为。这项名为「共享兴趣」的新技术将人工智能决策的显著性分析与人工注释的数据库进行比较。

例如,图像识别程序可能会将图片分类为狗的图片,而显著性方法可能会显示程序突出显示狗的头部和身体的像素以做出决定。相比之下,共享兴趣方法可能会将这些显著性方法的结果与图像数据库进行比较,在图像数据库中,人们注释了图片的哪些部分是狗的部分。

基于这些比较,共享兴趣方法然后要求计算人工智能的决策与人类推理的一致性,将其归类为八种模式之一。一方面,人工智能可能被证明是完全符合人类思维的,程序做出正确的预测并突出数据中与人类相同的特征。另一方面,人工智能完全分心,人工智能做出了错误的预测,并且没有突出人类所做的任何特征。

人工智能决策可能落入的其他模式,突出了机器学习模型正确或错误地解释数据细节的方式。例如,共同的兴趣可能会发现,人工智能只根据拖拉机的一部分(比如轮胎)就可以正确识别图像中的拖拉机,而不是像人类一样识别整个车辆,或者发现人工智能可能只在图片中也有摩托雪橇的情况下才能识别图像中的摩托雪橇头盔。

在实验中,共同兴趣有助于揭示人工智能程序是如何工作的,以及它们是否可靠。例如,Shared Interest 帮助皮肤科医生从皮肤损伤的照片中快速查看程序对癌症诊断的正确和错误预测示例。最终,皮肤科医生决定他不能相信这个程序,因为它根据不相关的细节而不是实际的病变做出了太多的预测。

在另一个实验中,一位机器学习研究人员使用 Shared Interest 来测试他应用于 BeerAdvocate 数据集的显著性方法,帮助他在传统手动方法所需时间的一小部分内分析数千个正确和错误的决策。共同兴趣有助于表明显著性方法通常表现良好,但也揭示了以前未知的缺陷,例如高估评论中的某些单词导致错误预测。

「为人类用户提供工具来询问和理解他们的机器学习模型对于确保机器学习模型可以安全地部署在现实世界中至关重要。」Boggust 说。

研究人员警告说,共享兴趣的表现与其采用的显著性方法一样好。Boggust 指出,每种显著性方法都有其自身的局限性,Shared Interest 继承了这些局限性。

未来,科学家们希望将共享兴趣应用于更多类型的数据,例如医疗记录中使用的表格数据。Boggust 补充说,另一个潜在的研究领域可能是自动估计 AI 结果中的不确定性。

科学家们已经公开了共享兴趣的源代码。

源代码:https://github.com/mitvis/shared-interest

相关报道:https://spectrum.ieee.org/-2657216063

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

087d5a15c5779d0e4e3c96c9f829e560.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482147.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

年末巨制:知识图谱嵌入方法研究总结

泽宇对自己的研究方向也就是知识图谱嵌入(KG Embedding)技术进行了总结,并制作了一套slides,力求让大家只看slides就可以理解并掌握知识图谱嵌入的相关知识和最新研究情况,包括知识图谱嵌入的基本概念、方法分类和经典…

吴恩达:未来十年,人工智能将向以数据为中心转变

来源:AI前线作者:Eliza Strickland译者:平川策划:凌敏本文最初发布于 IEEE Spectrum。吴恩达在人工智能领域可谓声名显赫。2000 年底,他与斯坦福大学的学生一起开创了使用图形处理单元(GPU)训练…

知识图谱最新权威综述论文解读:时序知识图谱部分

从最近一两年有关知识图谱的顶会论文中可以发现,越来越多的国内外研究者开始关注动态时序知识图谱,可见时序知识图谱已经成为了一大研究趋势,相信之后会有更多相关研究出来。因此,这期我们对综述论文的时序知识图谱部分接着进行解…

CACM观点:超越联邦学习,让AI跨越公司边界

来源:AI科技评论 编译:张泷玲、杨柳编辑:维克多今年1月份,苏黎世联邦理工学院的Stefan Feuerriegelc教授在 《Communications of the ACM》期刊上刊文“Artificial Intelligence Across Company Borders”,在文中教授指…

知识图谱最新权威综述论文解读:知识图谱应用部分

知识图谱在人工智能的许多领域都发挥了重要作用,综述论文的这一章引入多个最新的基于深度学习的知识驱动方法,主要包括的应用领域有自然语言理解,推荐系统和问答系统。 1 自然语言理解 知识感知的自然语言理解通过将结构化的知识注入一个统一…

知识图谱和专家系统、知识工程、数据库等概念的比较

知识图谱虽然是Google在2012年公布其开发的搜索引擎时提出的名词,但是知识图谱的雏形早在1960左右就已经出现,因此,知识图谱其实是很多相关技术继承发展的结果。并且,和知识图谱类似的还有好几个概念:专家系统、知识工…

CICC城市大脑专委会成功举办“城市大脑成熟度评估专家研讨会”

来源:中国指挥与控制学会2020年以来,城市大脑已成为科技领域的新热点。作为一个新兴的前沿科技领域,不同企业、不同城市对城市大脑的理解并不相同,在建设的过程中没有统一的建设规范和标准作为指导,从而导致不同企业建…

“知识图谱+”系列:知识图谱+图神经网络

最近有很多朋友联系泽宇说想了解一些知识图谱和图神经网络(GNN)结合的研究。那泽宇当然要满足朋友们的要求啊,本期泽宇从知识图谱的几个不同研究方向总结了结合GNN的经典研究,也和大家一起分享。所有内容是泽宇查阅了很多顶会论文…

周志华:“数据、算法、算力” 人工智能三要素,在未来要加上“知识”!

来源:AI科技评论作者:李雨晨 编辑:丛末在CCF-GAIR 2020 的人工智能前沿专场上,南京大学计算机系主任、人工智能学院院长、CCF会士、ACM、AAAI、IEEE、IAPR Fellow周志华教授以“反绎学习”为题发表了大会报告。周志华表示&#x…

“知识图谱+”系列:知识图谱+强化学习

泽宇个人一直认为强化学习是建模动态系统最好的方法之一,通过与环境的不断交互,在动作选择和状态更新的动态过程中逐渐达到优化目标。因此,本期泽宇将从知识图谱结合强化学习的角度介绍几个不同的研究方向的内容,包括知识图谱推理…

吴恩达 | 未来十年,人工智能将向以数据为中心转变

来源:IEEE Spectrum访者:吴恩达 计算机科学家吴恩达在人工智能领域可谓声名显赫。2000 年底,他与斯坦福大学的学生一起开创了使用图形处理单元(GPU)训练深度学习模型的先河,并在 2011 年共同创立了谷歌大脑…

给几句话就能生成分子,看见分子也能生成描述,神秘的Google X把多模态AI做成了黑科技...

来源:机器学习研究组订阅AIscience 领域近来有了诸多进展。设想一下,医生写几句话来描述一种专门用于治疗患者的药物,AI 就能自动生成所需药物的确切结构。这听起来像是科幻小说,但随着自然语言和分子生物学交叉领域的进展&#x…

MIT新发现:细胞在分裂前会把垃圾带走

来源:生物通 细胞可以利用这种策略清除有毒的副产品,给后代一个干净的环境。麻省理工学院(MIT)的研究人员发现,在细胞开始分裂之前,它们会进行一些清理,将似乎不再需要的分子排出体外。利用他们开发的一种测量细胞干质…

图灵测试其实已经过时了

来源:立委NLP频道图灵测试的实质就是要让人机交互在限定时间内做到真假莫辨。玩过GPT3的同学们都清楚,其实这一点已经做到了。从这个角度看,图灵测试已经过时了。区别人和机器,需要寻找其他的标准。今天就唠一唠正在风口上的预训练…

揭示世界本质的「机器科学家」,比深度神经网络还强?

来源:AI科技评论作者:Charlie Wood编译:王玥、刘冰一编辑:陈彩娴我们正处于“GoPro 物理学”的风口浪尖。无论摄像机聚焦于什么事件,算法都可以识别其中潜在的物理方程。2017 年,西北大学化学与生物工程系的…

AI 与合成生物学「联姻」的五大挑战:技术、数据、算法、评估与社会学

来源:ACM通讯编译:王玥编辑:陈彩娴在过去的二十年里,生物学发生了翻天覆地的变化,建立在生物系统上的工程成为了可能。赋予了我们细胞遗传密码(DNA)排序能力的基因组革命是这一巨大变化的主要推…

物理学家:时间旅行有可能实现,但前提是……

来源:机器之心作者:Barak Shoshany原文链接:https://phys.org/news/2022-04-parallel-timelines.html时间旅行是科幻电影、小说中经久不衰的话题,然而直到现在,我们依然无法确定这种幻想是否可行。在这篇文章中&#x…

二叉树----数据结构:二叉树的三种遍历及习题

二叉树----数据结构:二叉树的三种遍历,利用递归算法。 关于二叉树的遍历,应用非常广泛,不单单是访问打印结点,还可以进行一系列的操作,如赋值、删除、查找、求二叉树的深度等等。 有递归和非递归两种算法,非递归用到了…

谷歌硬件主管:AR眼镜还在开发,环境计算是未来目标

来源:网易智能5月13日消息,谷歌硬件主管里克奥斯特洛 (Rick Osterloh)日前在接受采访时表示,“环境计算”是谷歌未来的目标和愿景。奥斯特洛周三在接受采访时表示:“计算应该能够无缝帮助你解决任何问题,而且就在你身边…

大脑衰老可逆转,只需注入年轻脑脊液,「返老还童」登Nature

来源:FUTURE远见 选编:闵青云 「老喽,记不住喽。」随着年龄的不断增长,不少人都会发出这样的感叹——记忆力逐渐下降。那么是否存在一种方法,可以让这种自然现象「逆天改命」呢?Nature说:有的。…