LeCun用62页论文公布未来十年研究计划:AI自主智能

3e65815e9cf6cd8e24e409435cfcb3d7.png

来源:量子位 | 公众号 QbitAI
丰色 发自 凹非寺

这段时间,关于“AI未来往哪走的”讨论,可以说是越来越激烈了。

先是Meta被曝AI相关部门大重组,又有谷歌AI是否具备人格大讨论,几乎每一次讨论都能看到Yann LeCun的身影。

现在,LeCun终于坐不住了。

他用一篇长达62页的最新论文,详细介绍了他未来十年要做什么样的AI研究:

自主机器智能(Autonomous Machine Intelligence)。

4abb5fc299140883a263e456c1bce734.png

LeCun表示,在大数从业者都不会提前将自己的研究内容公布出来的“学术风气”下,他这一举动可以说是很特别了。

究其原因,除了发扬开放的科学研究精神,也是为了号召更多人一起加入其中,一起研究。

那么,他说的这个自主人工智能,究竟是什么,又要如何开展?

可以模拟世界运作的AI

在论文中,LeCun先是举了一个例子:

一个年轻人可以最快在20小时内就学会开车;

一个当今世界最优秀的自动驾驶系统,却要用到数百万甚至数十亿条带标签的训练数据,并在虚拟环境中进行数百万次强化学习才能得出——还完全达不到人类的水平。

从这个例子我们可以得出,尽管我们在人工智能方面的研究取得了不少进展,但离创造出一个能真正像人类一样思考和学习的AI还差得远。

LeCun所提出的自主人工智能就是要解决这个问题。

在他看来,对“世界模型”(世界如何运作的内部模型)进行学习的能力可能是关键。

3054e2b73cbbb5f82816573a8415e367.png

众所周知,人类和其他动物总是能通过观察和少量互动,就能以无监督的方式学习到大量关于世间万物如何运转的背景知识。

这些知识就是我们所说的常识,而常识就是构成“世界模型”的基础。

有了常识,我们在不熟悉的场景下也能开展行动。比如开头那位从来没有开过车的年轻人,碰到雪地,不用教也知道这样的路很滑得慢慢开。

此外,常识还可以帮我们填补信息在时间和空间上的缺失。比如一名司机听到了金属等物质的碰撞声,即使没有看到现场,也能知道那可能是有车祸发生。

在这些概念之上,LeCun提出了构建自主人工智能的第一个挑战:

如何设计一个学习范式和体系架构,让机器能够以自监督学习(也就是不需要标注数据)的方式学习“世界模型”,然后用这个模型去进行预测、推理和行动。

在这里,他重新组合了认知科学、系统神经科学、最优控制、强化学习和“传统”人工智能等各个学科中提出的想法,并将它们与机器学习中的新概念相结合,提出了一个由六个独立模块组成的自主智能架构。

5c243fc92104f71752d49ef6a0173a3a.png

其中,每个模块都是可微的,每一个都可以很容易地计算某个目标函数相对于自己的输入的梯度估计,并将梯度信息传播到上游模块。

六模块自主智能架构

LeCun设想的六个模块分别为:

1、配置模块:负责执行控制。给定要执行的任务,它可以通过调节其他模块的参数,为任务预先配置感知模块、世界模块等其他三个模块的值。

2、感知模块:负责接收来自传感器的信号并估计世界的当前状态。

3、世界模型模块:是这个架构中最复杂的一部分。有两个作用:

(1)估计感知模块无法提供的关于世界状态缺失的信息;

(2)预测未来可能的状态。由于世界充满了不确定性,该模块必须能够涵盖出多种可能的预测。

4、成本模块:用来计算标量(scalar)的输出,它可以预测智能体的不适程度(discomfort of the agent,智能体受到的损害、违反硬编码的行为约束等)。

该模块又有两个子模块:

(1)内在成本模块(cost),用来即时计算“不适感”;

(2)评判家(critic):预测内在成本模块的未来值。

5、行动模块:用来计算要实现的动作序列。行动模块可以找到一个使未来成本模块最小化的最优动作序列,并以类似于经典最优控制的方式,以最优序列输出第一个动作。

6、短期内存模块:跟踪当前和预测的世界状态以及相关成本。

其中,对于这个架构的核心——世界模块,最关键的挑战是如何使其能够表示出多个合理的预测。

此外,它在学习世界的抽象表示时,还要学会忽略不相关的信息,只保留最有用的细节。

比如在开车时,只需要预测驾驶员周围的汽车会做什么,不需要预测道路两旁树木中每片叶子的详细位置。

对此,LeCun也给了一个可能的解决方案:

联合嵌入预测架构 (JEPA),用它来处理预测中的不确定性。

同时,他还提出用非对比自监督学习对JEPA进行训练,以及从不同时间尺度上进行预测的分级JEPA,它可以将复杂任务拆解为一系列不那么抽象的子任务。

0d999d7e75d994c763848a2223c80e1a.png

AI待解决的问题还有很多

LeCun表示,对于未来几十年来说,训练出来这样一个世界模型是人工智能要取得突破性进展必须面对的最大挑战。

目前来看,要想实现上面这个架构,还有很多方面都有待定义:比如如何精确地训练critic、如何构造和训练配置器、以及如何使用短期内存跟踪世界状态,并存储世界状态、动作和相关内在成本的历史来调整critic……

除此之外,LeCun也在论文中指出,对于未来的自主人工智能研究:

(1)扩大模型规模有必要,但不够;

(2)奖励机制也不够,基于观察的自监督学习才是更有效的方式;

  (3)推理(reason)和计划(plan)实质上都归结于推断(inference):找到一系列动作和潜在变量,以最小化(可微)目标。这也是使推理与基于梯度的学习能够兼容的办法。

 (4)在以上这种情况下,可能就不需要明确的符号操作机制了。

更多细节可以查看论文原文:
https://openreview.net/forum?id=BZ5a1r-kVsf

参考链接:
[1]https://twitter.com/ylecun/status/1541492391982555138
[2]https://ai.facebook.com/blog/yann-lecun-advances-in-ai-research/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

70c8179d8af6da6e351dbfc1f7cf4629.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481902.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面试知识点:Date类、异常

问题:Java面试知识点:Date类、异常 答案: 1.Date类 代码如下: (1)创建日期: package com.xy;import java.util.Date;/*** ProjectName: day01* Package: com.xy* ClassName: test01* Author…

Cell解开谜题:原来是这种细胞教会新生的T细胞如何区分敌我!

来源:生物通研究人员发现了一种新的机制,可以教会正在训练中的免疫细胞在攻击病原体时保护自身组织。作为这种早期教育的一部分,专门的胸腺细胞会“摆”成不同的组织,教会免疫系统如何识别朋友和敌人。错误地对身体自身蛋白质做出…

Java面试知识点:集合、Set、泛型、HashSet、HashMap

Java面试知识点:集合、Set、泛型、HashSet、HashMap 答案: 1.集合 集合和数组的对比小结 1,数组的长度是不可变的,集合的长度是可变的。 2 ,数组可以存基本数据蟀和引用数据类型。 集合只能存引用数据类型&#xff0…

Java面试知识点:红黑树、Stream流

问题:Java面试知识点:红黑树、Stream流 答案: 1.红黑树 红黑树 • 平衡二叉B树 • 每一个节点可以是红或者黑 • 红黑树不是高度平衡的,它的平衡是通过“自己的红黑规则”进行实现的 2.Stream流 Stream流的常…

2022年SCI期刊最新影响因子正式发布

来源:高分子科技今日,广大科研人员期待的2022年最新影响因子已正式揭晓。每年的官方影响因子的发布,奖学金、毕业、职称、年终奖、申请国自然……几乎没有不需要它的。今年共有近13000本期刊获得影响因子,其中60%以上的期刊IF实现…

Java面试知识点:File、IO流

问题:Java面试知识点:File、IO流 答案: 1.File listFiles方法注意事项: • 当调用者不存在时,返回null • 当调用者是一个文件时,返回null • 当调用者是一个空文件夹时,返回一体度为0的数组 • 当调用者是…

中国科学家建立可与人脑突触数量相较的AI模型——“八卦炉”

来源:俄罗斯卫星通讯社中国科学家基于最新的一台配备双威处理器的超级计算机,建立了“脑级人工智能模型”——八卦炉(BAGUALU)。其具有174万亿个参数,可与人脑中的突触数量相媲美,将在从自动驾驶汽车到科学…

Java面试知识点:多线程

问题:Java面试知识点:多线程 答案: 1.线程 代码如下: package com.xy;/*** ProjectName: day01* Package: com.xy* ClassName: test01* Author: 杨路恒* Description:* Date: 2021/8/25 0025 16:57* Version: 1.0*/ public class…

基础科学研究需要哲学滋养

来源:人民网-人民日报 2017年3月28日作者:丘成桐(清华大学丘成桐数学科学中心)现代科技进步日新月异,不断拓展人类认知和活动的边界,广泛影响社会生产生活的各个方面。比如,高铁、飞机大大方便了…

Java面试知识点:网络编程

问题:Java面试知识点:网络编程 答案: 1.InetAddress 代码如下: package com.xy;import java.net.InetAddress; import java.net.UnknownHostException;/*** ProjectName: day01* Package: com.xy* ClassName: test01* Author: 杨路恒* Des…

游戏+与通用人工智能的实现

算法、算力与场景,是AI研究的关键要素。AI 对数据要求量极大,否则无法达到人类正确识别的程度。自 AlphaGo 一鸣惊人后,越来越多AI 研究团队意识到,游戏是 AI 的绝佳训练场之一。游戏推动科技创新上行一直以来我们很少把活泼轻松的游戏娱乐与…

A Survey on Knowledge Graphs___Representation, Acquisition and Applications.知识图谱综述:表示,获取,应用

知识图谱综述:表示、获取及应用 这是研究生第一篇综述文章,第一次读也是花了好几天的时间。 摘要:人类的知识提供了对世界的一种形式的理解。表征实体之间结构关系的知识图已成为认知和人的智能研究的热门方向。在这个调查中,我们提供了一…

李飞飞划重点的「具身智能」,走到哪一步了?

来源:选自Quanta magazine作者:Allison Whitten编译:机器之心编辑:张倩在前段时间的一篇文章中,李飞飞指出了计算机视觉未来的几个重要方向,其中最重要的一个就是具身智能。她认为,具身智能将成…

基于链接预测和卷积学习的Web服务网络嵌入

Web Service Network Embedding based on Link Prediction and Convolutional Learning 这是我读研的第一篇论文,也是花了好几天的时间。 基于链接预测和卷积学习的Web服务网络嵌入 摘要:为了在许多基本任务中,如基于Web的软件服务聚类、推荐…

芯片光刻路线图

来源:内容来自半导体行业观察(ID:icbank)编译:SPIE我们所知道的第一个半导体路线图可能是摩尔观察到的,以他为名字的“摩尔定律”预计,芯片的计算能力随着时间的增长呈指数增长。这促使芯片制造…

知识图谱常用指标:MRR、Hits@1、Hits@10、MR

知识图谱常用指标:MRR、Hits1、Hits10、MR 一、MRR MRR的全称是Mean Reciprocal Ranking,其中Reciprocal是指“倒数的”的意思。具体的计算方法如下: 其中是三元组集合,是三元组集合个数,是指第个三元组的链接预测排名…

科学创新四十年,我们可能还没搞明白科学和技术的基本概念

来源:澎湃新闻智库报告栏目撰文:周路明(源创力离岸创新中心负责人,深圳市科协原主席)中国系统推进科学和技术发展的工作始于改革开放,至今已经40余年。中国官方和民间发展科学和技术的热情在世界范围内都屈…

Python:Tensorflow中两个稀疏张量相乘

Python:Tensorflow中两个稀疏张量相乘 博主在想让两个稀疏张量进行相乘时,发现不能用tf.matmul、tf.sparse_matmul、tf.sparse_tensor_dense_matmul,看来tf内置的没有对两个SparseTensor相乘的函数,于是,我在网上找了相…

超越Yann LeCun:世界模型的学习和推理

来源:CreateAMind节选第二节,约4000字摘要了解大脑中的信息处理并创造通用人工智能是全世界科学家和工程师的长期愿望。人类智能的显着特征是在与包括自我在内的世界的各种互动中的高级认知和控制,这些不是预先定义的,而是随着时间…

有了这个标准,你就知道和你聊天的AI是什么水平了

来源:AI前线编辑:刘燕InfoQ 获悉,6 月 28 日,由清华大学计算机教授、智能技术与系统实验室副主任黄民烈发起,联合了十余家科研机构、二十多位知名学者共同制定的全球首个《AI 对话系统分级定义》(以下简称《…