一种改进的高光谱图像CEM目标检测算法

一种改进的高光谱图像CEM目标检测算法

人工智能技术与咨询 

来源:《 应用物理》 ,作者付铜铜等

关键词: 高光谱图像;光谱重排;CEM算法;目标检测; 

摘要: 约束能量最小化(Constrained Energy Minimization, CEM)目标检测算法广泛应用于高光谱目标检测中。本文在分析CEM算法的推导过程后,发现图像像元的选择,可以改善自相关系数,因此提出一种改进的CEM目标检测算法。该方法首先对高光谱数据集进行光谱重排、一阶微分,增加目标与背景的差异性;计算目标光谱与数据集中光谱点的相似度,求取CEM算法的自相关矩阵时去除与目标相似度高的像元,减少自相关矩阵对目标的抑制。为进一步抑制背景,增加算法的普适性,加入对数算子。最后对合成高光谱数据和真实高光谱数据进行试验,结果表明,与传统算法相比,提出的算法可以对伪装目标进行有效识别,而且对小目标和大面积目标检测都具有适用性。

1. 引言

高光谱遥感技术获得物质连续的光谱曲线,具有“光谱合一”的特点 [1] ,被列为遥感技术在20世纪三个最显著的进展之一 [2] [3] 。高光谱技术广泛应用于目标检测。根据先验经验是否可知,目标检测方法可分为有监督检测和无监督检测。无监督目标检测中经典算法为RX算法。文献 [4] 在RX中加入核函数提出一种非线性的异常目标检测算法:KRX (Kernel RX, KRX)算法。有监督目标检测中经典算法为CEM算法和自适应余弦一致性估计(Adaptive cosine Consistency Estimation, ACE)算法。文献 [5] 提出一种加权ACE算法。文献 [6] 提出一种基于双时间段检测的CEM算法。本文通过研究CEM算法,通过改善自相关矩阵及加入对数算子,提出一种不仅适用于大面积目标而且适用于小目标的改进的CEM (Modified Constrained Energy Minimization, MCEM)算法。

2. CEM算法

3. 改进的CEM算法

分析CEM算子可知,影响检测结果的量只有两个:目标先验光谱适量 dd 和自相关矩阵 RR ,当给定 dd 后,自相关矩阵 RR 的准确度直接影响算法的精确度。研究CEM算子的推导过程的两个约束条件可知, RR 是为了限制背景的输出,它由背景像元光谱求出。然而CEM算子在计算 RR 时把目标也计入其中,从而导致算子对目标的抑制。如果把疑似目标剥离 RR 的计算,那么我们就能得到更加精确有效的检测结果。在确定疑似目标过程中,往往会把非目标当做目标,算子对这些像元就会有一定的增强。为了抑制这些像元,我们加入对数算子,对背景进行进一步抑制。至此,本文提出一种改进后的CEM算法:MCEM算法。步骤如下:

4. 试验及结果分析

将提出的MCEM算法与CEM算法、ACE算法和RX算法进行比较,来验证提出算法的优越性。实验中所用高光谱数据来自美国RIT (Rochester Institute of Technology, RIT)大学的高光谱目标检测项目。高光谱图像大小为280 *800,包含126个波段,光谱范围为400~2500 nm。高光谱图像全景如图2所示。

4.1. 成高光谱试验

截取图2中右下角200 *200区域的绿色森林区作为背景,如图3所示。数据集中存在一白色色汽车标准光谱。白色汽车如图4所示。我们选取几处绿色区域的光谱求取平均值,作为绿色背景光谱。我们把背景光谱和汽车标准光谱按一定的比例线性混合,并加入噪声作为伪装目标。伪装目标光谱合成公式如下:

car为汽车的标准光谱,bac为背景光谱,sa为噪声,通常为高斯白噪声。此处我们取n = 6。目标植入坐标分别为(50, 50)、(50, 100)、(50, 150)、(100, 50)、(100, 100)、(100, 150)、(150, 50)、(150, 100)、(150, 150)。背景光谱、汽车标准光谱和伪装目标光谱如图5所示。

Figure 6. Test results of four algorithms

图6. 四种算法的检测结果

相比接受器操作特性(Receiver Operating Characteristic, ROC)曲线来说,ROC曲线下面积(Area Under roc Curve, AUC)值能更好地衡量算法的性能。AUC值越大,表示算法检测效率越高。AUC值可以更好地定性显示算法检测能力大小。为更好地定量分析算法的优劣性,我们使用AUC值和算法运行时间来评判算法的优劣性。

表1为图6对应算法检测结果的AUC值和算法运行时间。算法的AUC值与图6检测结果一致,四种算法的检测效果由好到坏依次为:MCEM算法、CEM算法、ACE算法和RX算法。MCEM算法结果明显优于CEM算法,虽然MCEM算法需要更多时间,但MCEM算法能有效地抑制背景,消耗一定的时间从而提高检测精度是有意义的。

RX算法

CEM算法

ACE算法

MCEM算法

AUC

0.999974942

0.999974981

0.999974968

0.999974986

运行时间

0.933461

1.271415

1.462738

1.716750

Table 1. Comparisons of algorithmic performance

表1. 算法性能对比图

4.2. 真实高光谱试验

Figure 8. The yellow fabric target

图8. 黄色织物目标

为验证算法的有效性,分别使用ACE、CEM、未加对数算子的MCEM和MCEM算法对图像进行目标检测。目标检测结果如图9所示。

由图9可以看出,ACE算法可以对背景进行有效地抑制,但是目标附近的像元也被极大地增强,因此ACE算法识别出的目标点比实际的目标点面积大。CEM算法可以有效地识别目标,并有效地限制背景输出,但是有些背景像元点输出明显高于周围像元输出。而未加对数算子的MCEM算法检测结果与CEM算法检测结果,几乎一模一样。说明不增加对数算子的MCEM算法对单个目标的识别效果与CEM算法相比,没有得到有效地改善。而MCEM算法检测结果对CEM中的突出点也有较好地抑制。与传统算法相比,MCEM算法对单个目标的检测也有不错的性能。在该实验中,各算法的AUC值和运行时间如表2所示。

Figure 9. Target detection results of algorithms

图9. 各算法目标检测结果图

ACE算法

CEM算法

未加对数算子的MCEM算法

MCEM算法

AUC

0.9978

0.9984

0.9984

0.9986

运行时间

0.365457

0.304341

0.342657

0.368282

Table 2. Comparisons of algorithmic performance

表2. 算法性能对比图

由表2可知,CEM算法运行时间少于ACE算法,而CEM算法AUC值大于ACE算法的AUC值,可看出在该实验中,CEM算法优于ACE算法。未加对数算子的MCEM算法AUC值与CEM算法AUC值相同,但其运行时间明显高于CEM算法,故未加对数算子的MCEM算法对小目标的识别效果比CEM算法差。MCEM算法的运行时间大于CEM算法运行时间,但MCEM算法AUC值高于CEM算法的AUC值,即MCEM算法消耗更多的时间来保证算法的检出率,同时降低算法的虚警率,这对我们来说是可以接受的。

5. 结论

本文通过光谱重排、一阶微分增大光谱的差异性,寻找疑似目标,从而改善自相关矩阵,并通过加入对数算子抑制背景,极大提高了目标检测准确性,同时也保证了算法对大面积目标和小目标检测的实用性。但该算法还有一定的局限性:一、该算法需要以目标光谱为基准对数据进行重排,因此对目标光谱的要求较高,然而目标光谱有时很难得到。二、该算法通过光谱重排、一阶微分增大相似光谱的差异性,当通过上述步骤后,还是无法降低目标光谱和背景光谱的相似度时,该算法效果不明显。

我们的服务类型

公开课程

人工智能、大数据、嵌入式                    

内训课程

普通内训、定制内训                         

项目咨询

技术路线设计、算法设计与实现(图像处理、自然语言处理、语音识别)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从生命起源到流行病:复杂系统中的多尺度涌现现象

来源:集智俱乐部 撰文:Oriol Artime, Manlio De Domenico翻译:梁栋栋、梁金涌现是复杂系统的基本特征,从微观到宏观的各个尺度,涌现现象普遍存在。然而,涌现是什么,目前仍没有公认的严格定义。2…

基于深度学习的磁环表面缺陷检测算法

基于深度学习的磁环表面缺陷检测算法 人工智能技术与咨询 来源:《 人工智能与机器人研究》 ,作者罗菁等 关键词: 缺陷检测;深度学习;磁环;YOLOv3; 摘要: 在磁环的生产制造过程中,常常由于生…

突发!美国新增四项技术出口限制,三项涉及半导体

来源:芯师爷8月12日,当地时间周五,美国商务部工业与安全局(BIS)在联邦公报上披露了一项出口限制加码的临时最终决定,将四项“新兴和基础技术”加入出口管制清单,其中三项涉及半导体。&#xff0…

深度学习在轨迹数据挖掘中的应用研究综述

深度学习在轨迹数据挖掘中的应用研究综述 人工智能技术与咨询 来源:《 计算机科学与应用》 ,作者李旭娟等 关键词: 深度学习;数据挖掘;轨迹挖掘;长短时记忆;序列到序列 摘要: 在过去十年,深度…

专访 | 吴志强院士:CIM与城市未来

来源:超图集团、数字孪生与未来城市撰写:采访/撰文 刘宏恺本文刊登于2021年7月第74期《超图通讯》采访/撰文 刘宏恺超图集团助理总裁、《超图通讯》总编▲吴志强:博士,教授,中国工程院院士,德国工程科学院…

基于深度学习技术的电表大数据检测系统

基于深度学习技术的电表大数据检测系统 人工智能技术与咨询 来源:《 人工智能与机器人研究》 ,作者方向 关键词: 智能电表;数据分析;深度学习时序模型; 摘要: 随着我国电厂不断发展,我国智能电表装机量…

人工智能与机器学习:算法基础和哲学观点

来源:图灵人工智能人工智能与机器学习:算法基础和哲学观点克劳斯迈因策尔原刊于《上海师范大学学报(哲学社会科学版)》2018年第3期摘要:图灵将人工智能简化为具有形式逻辑、自动证明和计算能力的符号处理系统。但是人类智能与语言理解有关。文…

基于深度学习的IRS辅助MIMO通信系统的CSI压缩及恢复研究

基于深度学习的IRS辅助MIMO通信系统的CSI压缩及恢复研究 人工智能技术与咨询 来源:《无线通信 》 ,作者黄富铿等 关键词: 智能反射面;深度学习;信道状态信息反馈; 摘要: 智能反射面(IRS, Intelligent Reflecting Su…

北大联合腾讯发布泛在操作系统研究报告:泛在操作系统成产业趋势,研究与实践进入加速期...

来源:AI前线作者:凌敏2022 年 8 月 11 日,北京大学和腾讯联合发布了《泛在操作系统实践与展望研究报告》(以下简称“报告”)。该报告首次在行业内提出了泛在操作系统的体系框架,并系统化梳理了多个类别泛在…

一类新算法研究智能飞行器航迹规划问题

一类新算法研究智能飞行器航迹规划问题 人工智能技术与咨询 2022-03-11 18:29 来源:《 应用数学进展》 ,作者傅维晨等 关键词: 航迹规划;多约束;改进的A*算法;时空复杂度; 摘要: 智能飞行器航迹规划问题…

科技部关于发布科技创新2030—“新一代人工智能”重大项目2022年度项目申报指南的通知...

来源:科技部科技部关于发布科技创新2030—“新一代人工智能”重大项目2022年度项目申报指南的通知国科发重〔2022〕218号各省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院各有关部门&am…

基于ARQ反馈的无人机通信中继自主选择研究

基于ARQ反馈的无人机通信中继自主选择研究 人工智能技术与咨询 来源:《无线通信 》 ,作者文非凡 关键词: 无人机;中继选择;ARQ反馈;多臂老虎机; 摘要: 无人机通信是实现无人机功能的关键环节&#xff0c…

基于目标检测的海上舰船图像超分辨率研究

基于目标检测的海上舰船图像超分辨率研究 人工智能技术与咨询 来源:《 图像与信号处理》 ,作者张坤等 关键词: 目标检测;生成对抗网络;超分辨率 摘要: 针对海上舰船图像有效像素在整体像素中占比小的问题,提出一种…

百度刘捷:数据驱动,AI赋能助力城市数字化转型

百度智能云副总裁、CICC城市大脑专业委会副主任委员刘捷在2022城市大脑前沿学术研讨会上,对AI赋能助力城市数字化转型问题进行了深入探讨,以下是百度智能云副总裁刘捷的PPT和发言内容:百度智能云副总裁刘捷的发言文字稿内容:在过去…

基于PX4的地面无人车避障系统及路径规划研究

基于PX4的地面无人车避障系统及路径规划研究 人工智能技术与咨询 来源:《动力系统与控制》 ,作者姜琼阁等 关键词: 地面无人车;避障;PX4; 摘要: 地面无人车避障及路径规划是指,无人车在自动巡航过程中&a…

耶鲁大学宣布推翻了进化论?科学界发文,“进化随机性”或被证伪

来源:科学的乐园最近,一条来自耶鲁大学和哥伦比亚大学科学实验室的联合研究声明引起了科学界不小的争论。根据两所大学发布的研究成果,科学界一直以来认为的“达尔文进化论随机性”很可能是不成立的设想。要知道,随机性在进化论中…

基于Hadoop的产品大数据分布式存储优化

人工智能技术与咨询 点击蓝字 关注我们 来源:《计算机科学与应用 》 ,作者王耐东等 关键词: 产品大数据;Hadoop平台;数据存储优化;数据检索 摘要: 摘要: 研究产品相关大数据资源组织存储与检索查询技术&…

图灵奖得主LeCun领导下的Meta AI,押注自监督

自监督学习真的是通往 AGI 的关键一步?来源:机器之心编辑:于腾凯校对:龚力Meta 的 AI 首席科学家 Yann LeCun 在谈到「此时此刻要采取的具体措施」时,也没有忘记远期的目标。他在一次采访时说:「我们想要构…

面向知识图谱的信息抽取

面向知识图谱的信息抽取 人工智能技术与咨询 点击蓝字 关注我们 来源:《 数据挖掘,》 ,作者赵海霞等 关键词: 知识图谱;信息抽取;实体抽取;关系抽取;开放域 摘要: 摘要: 随着大数据时代的到来…

“中国脑计划”:向最后的前沿进发 | 央视对话

报道来源:中科院自动化所、CCTV-2《对话》节目(完整视频见文末)大脑是人类智慧的集结,是已知宇宙当中最复杂的产物,但我们对大脑认知却很晚,比如我们常说心想事成、心外无物,在很长的历史时期当…