一类新算法研究智能飞行器航迹规划问题

一类新算法研究智能飞行器航迹规划问题

人工智能技术与咨询 2022-03-11 18:29

来源:《 应用数学进展》 ,作者傅维晨等

关键词: 航迹规划;多约束;改进的A*算法;时空复杂度;

摘要: 智能飞行器航迹规划问题是一个大范围多目标多约束的三维规划问题,这类问题可以归属于路径规划问题,在满足相应条件的同时要求在较短的时间内以较短的路程到达目的地。本文把航迹的约束条件转化到实际问题中,通过对A*算法的改进,建立起符合飞行器航迹规划的两种算法模型。通过两种方案算法的比较,在两种情况下,算法程序实现得到航迹规划结果表和路径图。算法的有效性和复杂度分析结果表明,给出的求解算法是十分有效的。

1. 引言

智能飞行器飞行操作的多约束环境下的航迹快速规划优化技术,是研究智能飞行器控制的一个重要问题。但是由于系统结构的设置产生的限制,这类飞行器的定位系统,对自身进行精准定位无法进行,定位误差如果累计到一定程度,就可能导致整体任务失败。所以在飞行过程中对定位误差进行校正,是智能飞行器航迹规划中一项重要步骤 [1]。本文研究智能飞行器在系统定位精度限制下的航迹快速规划问题,即如何在轨迹规划的过程中,将定位误差限制在可接受范围内,保证任务的顺利完成。

假定飞行器的出发点为A点,目的地为B点。其航迹约束如下:

(1) 飞行器在空间飞行过程中需要实时定位,其定位误差包括垂直误差和水平误差。飞行器每飞行1m,垂直误差和水平误差将各增加 δδ 个专用单位,,以下简称单位。到达终点时垂直误差和水平误差均应小于个单位,并且为简化问题,假设当垂直误差和水平误差均小于 θθ 个单位时,飞行器仍能够按照规划路径飞行。

(2) 飞行器在飞行过程中需要对定位误差进行校正。飞行区域中存在一些安全位置(称之为校正点)可用于误差校正,当飞行器到达校正点即能够根据该位置的误差校正类型进行误差校正。校正垂直和水平误差的位置可根据地形在航迹规划前确定。可校正的飞行区域分布位置依赖于地形,无统一规律。若垂直误差、水平误差都能得到及时校正,则飞行器可以按照预定航线飞行,通过若干个校正点进行误差校正后最终到达目的地。

(3) 在出发地A点,飞行器的垂直和水平误差均为0。

(4) 飞行器在垂直误差校正点进行垂直误差校正后,其垂直误差将变为0,水平误差保持不变。

(5) 飞行器在水平误差校正点进行水平误差校正后,其水平误差将变为0,垂直误差保持不变。

(6) 当飞行器的垂直误差不大于 α1α1 个单位,水平误差不大于 α2α2 个单位时才能进行垂直误差校正。

(7) 当飞行器的垂直误差不大于 β1β1 个单位,水平误差不大于 β2β2 个单位时才能进行水平误差校正。

(8) 飞行器在转弯时受到结构和控制系统的限制,无法完成即时转弯(飞行器前进方向无法突然改变),假设飞行器的最小转弯半径为200 m。

围绕在上述轨迹约束条件下,本文为智能飞行器建立航迹规划一般模型和算法。本文针对参考文献 [1] 中的数据,规划分别满足约束条件(1)~(7)和(1)~(8)时,飞行器运行的最优航迹。另外,飞行器的飞行环境可能随时间动态变化,虽然校正点在飞行前已经确定,但飞行器在部分校正点进行误差校正时存在无法达到理想校正的情况(即将某个误差精确校正为0),例如天气等不可控因素导致飞行器到达校正点也无法进行理想的误差校正。若假设飞行器在部分校正点(文献 [1] 中附件1和附件2中F列标记为“1”的数据)能够成功将某个误差校正为0的概率是80%,如果校正失败,则校正后的剩余误差为min (error, 5)个单位(其中error为校正前误差,min为取小函数),本文针对此情况重新规划航迹。

2. 飞行器航迹规划模型

在给定初始点A到终点B条件下,为确保测量飞机从A点通过校正点到达B点的全程距离最小 [2]。设 titi 时刻,飞行器当前位置与可达域校正点的距离为 A(ti)A(ti) [3],结合约束条件,建立飞行器航迹规划模型:

按照本文参数特点,本文采用水平、垂直误差交替校正的方式,为了将飞行器的误差控制在较小的范围内,应当先校正垂直误差,然后校正水平误差,之后依次轮流交替,直至到达终点B。

为求解最优航迹问题,我们设计了两套方案:

方案一:每次选择可达域中最近的校正点,此方案能在某误差得到校正的同时将另一误差控制在最小范围,使得各方向误差距离极限仍有较大空间(记为“误差余量”)能最大程度的保障飞行器抵达终点。但是由于每次选择最短距离前进,过于保守,航迹规划过程中会遇到某点S1可达域为空而无法继续的情况。实际上,前面的规划中若某些点能选择大一点的距离前进,校正相同次数后或能到达S2,而S2可达域非空,可以继续规划航迹,即也许可以避开S1。

方案二:考虑飞行器当前位置到可达域校正点的距离和可达域校正点到达终点的直线距离,计算两距离之和可得多个组合,假设各个校正点为当前位置,计算其是否存在可达域,去除不存在可达域的校正点对应的组合,在剩余组合中取最小组合。该方案属于A*算法的应用,既考虑了当前飞行距离也预估了后续飞行距离,从全局考虑了飞行路径,便于找到较优路径。但是可能遇到可达域为空的情况,此时无法继续规划路径,因而不能抵达终点。

加上约束条件(8)之后,在飞行器遇到障碍物时,并且正处于全局最优路径上的时候,采用局部A*路径规划算法 [4],将障碍物区域表示为一个球体 [5]。则半圆危险度表示为:

当飞行器未遇到障碍物时,危险度为0,飞行器的误差则与到障碍物中心的距离有关,距离越近越危险但误差相对小。(1)式中, RmaxRmax 是障碍物的最大半径, dvdv 是飞行器到障碍物中心的距离。

那么加上约束条件(8)之后,规划模型为:

本文中转弯带来的副作用仅是缩小了校正点的工作域,因此方案一、二的算法规划航迹适用两种情况。

另外,飞行器的飞行环境可能随时间动态变化,虽然校正点在飞行前已经确定,但飞行器在部分校正点进行误差校正时存在无法达到理想校正的情况(即将某个误差精确校正为0)。因此,部分校正点存在校正失效的可能,会增大该方向误差的值,进而减少其误差余量,将影响后续校正点的选择,会改变航迹甚至使得航迹规划失败。因校正失效的概率较低(只有20%),根据不同情况可以用两种方法处理失效的校正:

1) 每次校正后加上概率误差。

2) 极端情况,每次有可能校正失效时都按照校正失效处理,即必然失效。

3. 改进的A*算法

下面我们将在经典的A*算法 [6] - [12] 的基础上,提出了一种改进的A*算法,用于解决本文的飞行器航迹规划问题。

A*算法是一种启发式搜索算法。通过在搜索空间不断评估路径的估价函数值来启发式搜索节点来构造最优路径。通常A*算法的常用估价函数表示为

其中,n为当前节点, f(n)f(n) 是从初始点经由节点为n到目标点的估价函数, g(n)g(n) 是在状态空间中从初始节点到节点n的实际代价, h(n)h(n) 是从节点n到目标节点的估计代价。

A*搜索算法的搜索效率由搜索方向和搜索步长决定。为了提升搜索效率,需要从搜索方向、搜索节点确定改进。路径的优劣则主要依赖于估价函数的设计。所以我们从搜索节点和方向方面改进,结合本文要解决的问题,我们改进了校正点的选择,例如每次选择可达域中最近的校正点,并且本文需要加入水平、垂直的校正,在算法的搜索方向改进中,考虑如果当前校正了水平误差,则水平误差暂时无忧,能最快降低垂直误差的机会就是下一次校正,如此交替进行,这样就 能确保两个误差都尽可能小,所以改进后的算法的设计对极端情况承受能力较强,并将改进的算法的具体步骤设计在下文給出,除非另有说明,否则我们总是在本文中使用算法命名的符号。

第一方面,我们针对所有文献 [1] 中的数据,来分别规划满足约束条件(1)~(7)时,飞行器运行的最优航迹,并综合性考虑以下两个优化目标:

1) 通过算法来预判每个最优路径,使航迹长度尽可能小;

2) 通过算法来使经过校正区域进行校正的次数尽可能少,并讨论分析所用算法的有效性和复杂度。

第二方面,我们针对所有文献 [1] 附件中的数据(参数与第一问的相同),分别规划满足条件(1)~(8)时飞行器的航迹,并综合性考虑以下两个优化目标:

1) 通过算法来预判每个最优路径,使航迹长度尽可能小;

2) 通过算法来使经过校正区域进行校正的次数尽可能少,并讨论分析所用算法的有效性和复杂度。

最后根据一、二两种方案设计出算法1和2,并根据通过软件实现后得出的结果,画出两个方面的两个数据集的航迹规划路径图,见图1~6,将结果(即飞行器从起点出发所经过的误差校正点编号,和校正前的误差)依次填入航迹规划的结果表中,见表1~8,并得出算法的时空复杂度,证明算法是有效可行的,见表9。

算法1

Step1:计算当前点A的可达域;

Step2:若可达域非空,转Step3,否则,标记当前点为失败点,转Step5;

Step3:若终点在可达域中,结束程序,逆序输出轨迹栈元素即可得到航迹规划。否则,转Step4;

Step4:选择可达域中最近的点Aclose作为后继点,将可达域存入可达域栈C中,将上一校正点Apre校正后的水平误差pre_h和垂直误差pre_v存入对应栈,以pre_h和pre_v为基础加上Apre到A点所产生的误差增量来更新对应误差h、v,将后继点加入轨迹栈,标记后继点为当前点,转Step1;

Step5:将轨迹栈中栈顶元素出栈(此元素与当前点一致,均为失败点),再从栈顶出栈一个元素,标记为当前点,将可达域栈栈顶元素出栈,去除可达域中失败点的信息(确保此点不会再有机会选中)之后作为新的可达域,将水平误差栈和垂直误差栈栈顶元素出栈,替换当前水平误差h和垂直误差v,转Step2。

Figure 1. 1 (data 1) track route map

图1. 一(数据1)航迹路径图

Figure 2. 1 (data 2) track route map

图2. 一(数据2)航迹路径图

算法2

Step1:计算当前点A的可达域,若终点是在可达域转Step2;否则转Step3;

Step2:计结束程序,逆序输出轨迹栈元素即可得到航迹规划;

Step3:计计算当前点到达可达域各点的误差,在此误差值下,假设可达域各点Bi为当前点;

Step4:计计算Bi是否存在可达域,将存在可达域的点加入集合P;

Step5:计计算点A到P中各点的距离以及P中各点到终点的距离之和,以上一校正点Apre校正后的水平误差pre_h和垂直误差pre_v为基础加上Apre到A点所产生的误差增量来更新对应误差h、v,取最小距离点作为后继点,将后继点加入轨迹栈,标记后继点为当前点,进入Step1。

Figure 3. 2 (data 1) track route map

图3. 二(数据1)航迹路径图

Figure 4. 2 (data 2) track route map

图4. 二(数据2)航迹路径

第三方面,我们解决飞行器在部分校正点进行误差校正时存在无法达到理想校正的情况,假设飞行器到达该校正点时即可知道在该点处是否能够校正成功,但不论校正成功与否,均不能改变规划路径,因此,部分校正点存在校正失效的可能,会增大该方向误差的值,进而减少其误差余量,将影响后续校正点的选择,会改变航迹甚至使得航迹规划失败。因校正失效的概率较低,只有20%,根据不同情况可以用两种方法处理失效的校正,并设计出算法3和算法4,它是以算法1和算法2为基础调整校正时的误差更新机制。

Figure 5. 3 (data 1) track route map

图5. 三(数据1)航迹路径图

Figure 6. 3 (data 2) track route map

图6. 三(数据2)航迹路径图

数据

航迹路径

数据1

['A', '503', '200', '136', '80', '237', '278', '375', '172', '340', '277', '501', 'B']

数据2

['A','140', '150', '114', '234', '222', '230', '225', '255', '123', '45', '160', '92', '93', '61', '292', 'B']

Table 1. Final track route 1

表1. 最终航迹路径一

矫正点编号

矫正前垂直误差

矫正前水平误差

矫正点类型

0

0

0

出发点A

140

5.6558

5.6558

垂直

150

6.7568

12.4126

水平

114

15.52

8.7632

垂直

234

4.5312

13.2944

水平

222

11.8136

7.2823

垂直

230

11.16

18.4422

水平

225

14.9956

3.8358

垂直

255

7.4652

11.3009

水平

123

15.9366

8.4714

垂直

45

10.0062

18.4776

水平

160

17.4913

7.4851

垂直

92

5.7762

13.2613

水平

93

15.2609

9.4847

垂直

61

9.8342

19.3189

水平

292

16.3881

6.5539

垂直

326

6.9605

13.5144

终点B

Table 2. Track planning results Table 1: Data 1

表2. 航迹规划结果表一:数据1

校正点编号

校正前垂直误差

校正前水平误差

校正点类型

0

0

0

出发点A

503

13.3879

13.3879

垂直

200

0.8651

14.253

水平

136

14.2711

13.4061

垂直

80

4.2867

17.6928

水平

237

8.9145

4.6277

垂直

278

17.9422

22.57

水平

375

23.4841

5.5418

垂直

172

15.4964

21.0382

水平

340

21.6449

6.1485

垂直

277

12.0024

18.1509

水平

501

20.1663

8.164

垂直

612

8.49

16.654

终点B

Table 3. Track planning results Table 1: Data 2

表3. 航迹规划结果表一:数据2

算法

数据编号

校正点数量(个)

航迹长度(米)

算法1

1

31

169641

算法2

1

11

110358

算法1

2

31

1680639

算法2

2

15

850848

Table 4. Comparison of Algorithms 1 and 2 on Data 1 and 2

表4. 算法1和2在数据1和2上的对比

数据

航迹路径

数据1

['A', '503', '200', '136', '80', '237', '278', '375', '172', '340', '277', '501', 'B']

数据2

['A','140', '150', '114', '234', '222', '230', '225', '255', '123', '45', '160', '92', '93', '61', '292', 'B']

Table 5. Final track route 2

表5. 最终航迹路径二

校正点编号

校正后垂直误差

校正后水平误差

校正点类型

0

0

0

出发点A

503

0

13.3879

垂直

200

0.8651

0

水平

136

0

13.4061

垂直

80

4.2867

0

水平

237

0

4.6277

垂直

278

17.9422

0

水平

375

0

5.5418

垂直

172

15.4964

0

水平

340

0

6.1485

垂直

277

12.0024

0

水平

501

0

8.164

垂直

612

0

0

终点B

Table 6. Track planning results Table 2: Data 1

表6. 航迹规划结果表二:数据1

矫正点编号

矫正后垂直误差

矫正后水平误差

矫正点类型

0

0

0

出发点A

140

0

5.6558

垂直

150

6.7568

0

水平

114

0

8.7632

垂直

234

4.5312

0

水平

222

0

7.2823

垂直

230

11.1599

0

水平

225

0

3.8358

垂直

255

7.4652

0

水平

123

0

8.4714

垂直

45

10.0062

0

水平

160

0

7.4851

垂直

92

5.7762

0

水平

175

0

8.3641

垂直

279

9.6878

0

水平

301

0

4.9531

垂直

61

12.3271

0

水平

292

0

6.5539

垂直

326

0

0

终点B

Table 7. Track planning results Table 2: Data 2

表7. 航迹规划结果表二:数据2

数据1

数据2

矫正点编号

矫正后 垂直误差

矫正后 水平误差

矫正点类型

矫正点编号

矫正后 垂直误差

矫正后 水平误差

矫正点类型

0

0

0

出发点A

0

0

0

出发点A

503

5

13.3879

垂直

157

0

9.4768

垂直

200

5.8651

5

水平

169

3.7014

0

水平

354

5

7.23

垂直

322

0

4.1481

垂直

80

19.8381

5

水平

252

3.8718

0

水平

237

5

9.6277

垂直

266

0

7.9939

垂直

282

18.6817

0

水平

270

6.4

0

水平

33

0

2.4699

垂直

89

0

7.5508

垂直

11

10.9239

0

水平

236

10.1274

0

水平

403

0

12.8409

垂直

132

0

9.7042

垂直

594

11.0291

0

水平

53

10.2592

0

水平

501

0

11.1969

垂直

112

0

5.2029

垂直

612

0

0

终点B

268

2.1572

0

水平

273

0

5.0481

垂直

103

5.2292

0

水平

250

0

5.7711

垂直

243

6.9589

0

水平

73

0

3.5428

垂直

82

5.7316

0

水平

6

0

7.1847

垂直

249

9.0008

0

水平

274

0

2.8407

垂直

51

2.6237

0

水平

201

0

7.2799

垂直

12

8.7014

0

水平

321

0

7.1906

垂直

279

10.3589

1

水平

301

0

5.9531

垂直

38

9.8721

0

水平

110

0

3.9265

垂直

61

6.843

0

水平

292

0

6.5539

垂直

326

0

0

终点B

Table 8. Track planning results Table 3: Data 1 and Data 2

表8. 航迹规划结果表三:数据1和数据2

算法

时间复杂度

空间复杂度

算法1

N2

N

算法2

N3

N

Table 9. Space-time complexity of Algorithm 1 - 4

表9. 算法1~4的时空复杂度

算法3

Step1:计算当前点A的可达域;

Step2:若可达域非空,转Step3,否则,标记当前点为失败点,转Step5;

Step3:若终点在可达域中,结束程序,逆序输出轨迹栈元素即可得到航迹规划。否则,转Step4;

Step4:选择可达域中最近的点Aclose作为后继点,将可达域存入可达域栈C中,将上一校正点Apre校正后的水平误差pre_h和垂直误差pre_v存入对应栈,以pre_h和pre_v为基础加上Apre到A点所产生的误差增量来更新对应误差h、v,若后继点为可能失效点,将对应误差加上bia进行二次校正,将后继点加入轨迹栈,标记后继点为当前点,转Step1;

Step5:将轨迹栈中栈顶元素出栈(此元素与当前点一致,均为失败点),再从栈顶出栈一个元素,标记为当前点,将可达域栈栈顶元素出栈,去除可达域中失败点的信息(确保此点不会再有机会选中)之后作为新的可达域,将水平误差栈和垂直误差栈栈顶元素出栈,替换当前水平误差h和垂直误差v,转Step2。

算法4

Step1:计算当前点A的可达域,若终点是在可达域转Step2;否则转Step3;

Step2:结束程序,逆序输出轨迹栈元素即可得到航迹规划;

Step3:计算当前点到达可达域各点的误差,在此误差值下,假设可达域各点Bi为当前点;

Step4:计算Bi是否存在可达域,将存在可达域的点加入集合P;

Step5:计算点A到P中各点的距离以及P中各点到终点的距离之和,以上一校正点Apre校正后的水平误差pre_h和垂直误差pre_v为基础加上Apre到A点所产生的误差增量来更新对应误差h、v,若后继点为可能失效点,将对应误差加上bia进行二次校正,取最小距离点作为后继点,将后继点加入轨迹栈,标记后继点为当前点,进入Step1。

4. 数值结果

本节利用已知数据来验证算法1~4的有效性。我们的数值实验是应用Python和Matlab软件进行计算。

5. 总结

本文使用了一种新的改进的A*算法,算法模型在第一方面中,很好地降低两个误差增长所带来的风险,如当前校正了水平误差,则水平误差暂时无忧,能最快降低垂直误差的机会就是下一次校正,如此交替进行,能确保两个误差都尽可能小,算法的设计对极端情况承受能力较强,得出的路径总长较短,耗费的时间较少,见表1~4。第二方面中,考虑转弯带来的副作用仅是缩小了校正点的工作域,因此还可利用问题1的算法规划航迹,此时需将各个数据对应的参数减小0.63个单位,在问题1算法的基础上规划航迹,减少了工作量,并能得出很好的路径,见表5~7。在第三方面中,考虑到部分校正点存在校正失效的可能,在正常情况和极端情况,每次有可能校正失效时都按照校正失效处理,大大增加了算法的可行性和覆盖性,得出安全可行的路径,见表8。总体来说,算法1~4在空间存在有解航迹时必能保证抵达终点,可以快速找到较优轨迹甚至最优轨迹,两个算法模型优势互补,既能兼顾快速寻优的需求,也能保障有解必达终点的安全性。

我们的服务类型

公开课程

人工智能、大数据、嵌入式                    

内训课程

普通内训、定制内训                         

项目咨询

技术路线设计、算法设计与实现(图像处理、自然语言处理、语音识别)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481720.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

科技部关于发布科技创新2030—“新一代人工智能”重大项目2022年度项目申报指南的通知...

来源:科技部科技部关于发布科技创新2030—“新一代人工智能”重大项目2022年度项目申报指南的通知国科发重〔2022〕218号各省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院各有关部门&am…

基于ARQ反馈的无人机通信中继自主选择研究

基于ARQ反馈的无人机通信中继自主选择研究 人工智能技术与咨询 来源:《无线通信 》 ,作者文非凡 关键词: 无人机;中继选择;ARQ反馈;多臂老虎机; 摘要: 无人机通信是实现无人机功能的关键环节&#xff0c…

基于目标检测的海上舰船图像超分辨率研究

基于目标检测的海上舰船图像超分辨率研究 人工智能技术与咨询 来源:《 图像与信号处理》 ,作者张坤等 关键词: 目标检测;生成对抗网络;超分辨率 摘要: 针对海上舰船图像有效像素在整体像素中占比小的问题,提出一种…

百度刘捷:数据驱动,AI赋能助力城市数字化转型

百度智能云副总裁、CICC城市大脑专业委会副主任委员刘捷在2022城市大脑前沿学术研讨会上,对AI赋能助力城市数字化转型问题进行了深入探讨,以下是百度智能云副总裁刘捷的PPT和发言内容:百度智能云副总裁刘捷的发言文字稿内容:在过去…

基于PX4的地面无人车避障系统及路径规划研究

基于PX4的地面无人车避障系统及路径规划研究 人工智能技术与咨询 来源:《动力系统与控制》 ,作者姜琼阁等 关键词: 地面无人车;避障;PX4; 摘要: 地面无人车避障及路径规划是指,无人车在自动巡航过程中&a…

耶鲁大学宣布推翻了进化论?科学界发文,“进化随机性”或被证伪

来源:科学的乐园最近,一条来自耶鲁大学和哥伦比亚大学科学实验室的联合研究声明引起了科学界不小的争论。根据两所大学发布的研究成果,科学界一直以来认为的“达尔文进化论随机性”很可能是不成立的设想。要知道,随机性在进化论中…

基于Hadoop的产品大数据分布式存储优化

人工智能技术与咨询 点击蓝字 关注我们 来源:《计算机科学与应用 》 ,作者王耐东等 关键词: 产品大数据;Hadoop平台;数据存储优化;数据检索 摘要: 摘要: 研究产品相关大数据资源组织存储与检索查询技术&…

图灵奖得主LeCun领导下的Meta AI,押注自监督

自监督学习真的是通往 AGI 的关键一步?来源:机器之心编辑:于腾凯校对:龚力Meta 的 AI 首席科学家 Yann LeCun 在谈到「此时此刻要采取的具体措施」时,也没有忘记远期的目标。他在一次采访时说:「我们想要构…

面向知识图谱的信息抽取

面向知识图谱的信息抽取 人工智能技术与咨询 点击蓝字 关注我们 来源:《 数据挖掘,》 ,作者赵海霞等 关键词: 知识图谱;信息抽取;实体抽取;关系抽取;开放域 摘要: 摘要: 随着大数据时代的到来…

“中国脑计划”:向最后的前沿进发 | 央视对话

报道来源:中科院自动化所、CCTV-2《对话》节目(完整视频见文末)大脑是人类智慧的集结,是已知宇宙当中最复杂的产物,但我们对大脑认知却很晚,比如我们常说心想事成、心外无物,在很长的历史时期当…

基于图像的数据增强方法发展现状综述

基于图像的数据增强方法发展现状综述 人工智能技术与咨询 2022-03-22 20:57 点击蓝字 关注我们 来源:《 计算机科学与应用》 ,作者冯晓硕等 关键词: 数据增强;图像数据集;图像处理;深度学习 摘要: 摘要: …

自监督学习启示大脑的运作方式

来源:混沌巡洋舰 近十年来,许多最令人印象深刻的人工智能系统都使用大量的标记数据进行训练。例如,一张图片可能被标记为“虎斑猫”或“老虎”,以“训练”一个人工神经网络来正确区分虎斑猫和虎。这一策略既取得了惊人的成功&…

2022年中国AI芯片行业深度研究

人工智能技术与咨询 四大类人工智能芯片(GPU、ASIC、FGPA、类脑芯片)及系统级智能芯片在国内的发展进度参差不齐。用于云端的训练、推断等大算力通用 芯片发展较为落后;适用于更多垂直行业的终端应用芯片如自动驾驶、智能安防、机器人等专用…

图形学人物简史:两位图灵奖与奥斯卡得主的图形学研究往事

来源:大数据文摘大数据文摘授权转载自AI科技评论整理:李梅、王玥编辑:陈彩娴8 月 8 日至 11 日,计算机图形学国际顶级会议 SIGGRAPH 在加拿大温哥华举办。2019 年图灵奖和多次奥斯卡奖「双料得主」Pat Hanrahan 和 Ed Catmull 在大…

一种基于标签比例信息的迁移学习算法

人工智能技术与咨询 点击蓝字 关注我们 来源:《 计算机科学与应用》 ,作者汪槐沛等 关键词: 标签比例学习;数据挖掘;迁移学习 摘要: 摘要: 标签比例学习问题是一项仅使用样本标签比例信息去构建分类模型的挖掘任务&am…

智慧城市升级版已来 | 城市大脑建设标准十大原则

来源:球迷Long笔记(1) 城市大脑建设标准应具备的十个原则1.形成理论基础2.适应复杂场景3.突破地域限制 4.消除信息孤岛5.坚持以人为本 6.降低建设成本7.实现协同建设 8.体现人机融合9.保持持续进化 10.支撑协同发展(2)…

基于机器视觉的散热器钎焊缺陷检测系统研发

人工智能技术与咨询 点击蓝字 关注我们 来源:《 图像与信号处理》 ,作者 吕广贤 关键词: 机器视觉;缺陷检测;钎焊 摘要: 摘要: 为解决散热器钎焊缺陷在工业检测过程中效率低、差错率高的问题,本文设计了一…

逻辑究竟是什么以及逻辑应当是什么?

来源:“哲学园” 公众号编辑:姜天海审核:范 杰逻辑究竟是什么以及逻辑应当是什么?郝兆宽作者简介:郝兆宽,复旦大学哲学学院教授人大复印:《逻辑》2016 年 03 期原发期刊:《哲学分析…

基于遗传算法的无人机监视覆盖航路规划算法研究

基于遗传算法的无人机监视覆盖航路规划算法研究 人工智能技术与咨询 点击蓝字 关注我们 来源:《 计算机科学与应用》 ,作者 李御驰等 关键词: 人工势场法;无人机;监视覆盖航路规划 摘要: 摘要: 为解决传统覆盖航路规…

基于改进SSD算法的小目标检测与应用

人工智能技术与咨询 点击蓝字 关注我们 来源:《 计算机科学与应用》 ,作者刘洋等 关键词: SSD;深度学习;小目标检测 摘要: 摘要: 针对通用目标检测方法在复杂环境下检测小目标时效果不佳、漏检率高等问题,…