来源:生物通
Steph Curry罚球时,他的大脑会利用运动记忆。现在,加州大学旧金山分校(UCSF)的研究人员已经展示了这种类型的记忆是如何在睡眠期间得到巩固的,当大脑处理白天的学习,使做某事的物理行为成为潜意识时。
Karunesh Ganguly
当金州勇士队的Steph Curry罚球时,他的大脑会利用运动记忆。现在,加州大学旧金山分校(UCSF)的研究人员已经展示了这种类型的记忆是如何在睡眠期间得到巩固的,当大脑处理白天的学习,使做某事的物理行为成为潜意识时。
这项研究于2022年12月14日发表在《Nature》杂志上,表明大脑通过回顾给定动作的试验和错误来做到这一点。打个比方,这意味着整理库里投过的所有罚球,清除所有动作的记忆,除了那些命中目标的动作,或者大脑认为“足够好”的动作。其结果是,在不考虑涉及的身体动作的情况下,能够以很高的精度罚球。
加州大学旧金山分校威尔神经科学研究所的神经学教授、医学博士Karunesh Ganguly说:“即使是精英运动员也会犯错,这就是比赛有趣的地方。运动记忆并不是完美的表现。这是关于可预见的错误和可预见的成功。只要错误日复一日地保持稳定,大脑就会说,‘让我们把这段记忆锁起来吧。’”
Ganguly和他的团队发现,“锁定”过程涉及大脑不同部分之间一些令人惊讶的复杂交流,发生在被称为非快速眼动睡眠的深度恢复性睡眠期间。Ganguly说,睡眠很重要,因为我们有意识的大脑倾向于关注失败,他之前发现了与睡眠相关的脑电波会影响技能的保留。“在睡眠期间,大脑能够筛选它所接受的所有实例,并提出成功的模式。”
地球上的运动技能在阿凡达的潘多拉星球上行不通人们曾经认为学习运动技能只需要运动皮层。但近年来,更复杂的情况出现了。
为了更深入地研究这一过程,Ganguly让小鼠去拿食物。然后,研究小组观察了他们在非快速眼动睡眠期间三个区域的大脑活动:负责记忆和导航的海马体、运动皮层和前额叶皮层(PFC)。在13天的时间里,出现了一种模式。
首先,在一个被称为“快速学习”的过程中,PFC与海马体协调,可能使动物能够感知其相对于周围空间的运动以及它在该空间中的位置。在这个阶段,大脑似乎在探索和比较练习任务时产生的所有动作和模式。
其次,在一个被称为慢学习的过程中,PFC似乎做出了价值判断,这可能是由任务成功时激活的奖励中心驱动的。它与运动皮层和海马体进行相声,关闭与失败有关的信号,打开与成功有关的信号。
最后,当这些区域的电活动变得同步时,海马体的作用减弱了,大脑所记录的奖励事件出现了,它们被储存在我们所谓的“运动记忆”中。
当大鼠最初学习这项任务时,它们的大脑信号是嘈杂和混乱的。随着时间的推移,Ganguly可以看到信号同步,直到大鼠的成功率达到70%。在那之后,只要成功的程度稳定,大脑似乎就会忽略错误,并保持运动记忆。换句话说,大脑开始预期一定程度的错误,而不更新运动记忆。
就像NBA球员一样,大鼠掌握了一项基于世界如何运作的心理模型的技能,这些模型是它们从重力、空间和其他线索的物理经验中创造出来的。但这种运动学习不容易转移到线索和物理环境不同的情况下。
Ganguly说:“如果一切都改变了,例如,如果斯蒂芬·库里在阿凡达的世界里,他一开始可能看起来不那么熟练了。”
改掉一个习惯的最好方法
如果库里伤了手指,不得不学着用不同的方式投篮呢?这项研究提供了一个答案。
Ganguly说:“忘记一项任务是可能的,但要做到这一点,你必须强调情况,直到你犯错误的程度。”
当研究人员对大鼠获取颗粒的任务做出轻微改变时,大鼠会犯更多的错误,研究人员在大鼠的大脑活动中看到更多的噪音。
这个变化足够小,以至于大鼠不需要一直回到他们学习的起点,只需要到“断点”,然后从那里重新学习任务。
但Ganguly说,由于运动记忆是一组在时间上相互跟随的动作,因此在一个复杂的动作中改变运动记忆,比如罚球,可能需要改变一个用来启动整个序列的动作。
Ganguly说,如果库里通常在投球前弹两次球“最好是通过只弹一次或三次来重新训练大脑。这样,你就可以从头开始了。”
参考文献
Cortical–hippocampal coupling during manifold exploration in motor cortex
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”