论文浅尝 | 知识图谱问答中的层次类型约束主题实体识别

Citation:Qiu, Y., Li, M., Wang, Y., Jia, Y., & Jin, X.(2018). Hierarchical Type Constrained Topic Entity Detection for Knowledge Base Question Answering. Companion of  the Web Conference (pp.35-36).


动机


对于 KBQA 任务,有两个最为重要的部分:其一是问题实体识别,即将问题中的主题实体识别出来,并与 KB 做实体链接;其二是谓词映射。对于主题实体识别任务,之前的做法多为依靠字符串相似度,再辅以人工抽取的特征和规则来完成的。但是这样的做法并没有将问题的语义与实体类型、实体关系这样的实体信息考虑进来。实体类型和实体关系,很大程度上,是与问题的上下文语义相关的。当只考虑实体关系时,会遇到 zero-shot 的问题,即测试集中某实体的关系,是在训练集中没有遇到过的,这样的实体关系就没法准确地用向量表达。

因此,为了解决上述问题,本文首先利用 entity type(实体类型)的层次结构(主要为实体类型之间的父子关系),来解决 zero-shot 的问题。如同利用 wordnet 计算 word 相似度的做法一般,文章将父类型的“语义”视为所有子类型的“语义”之和。一个实体总是能够与粗颗粒的父类型相关,例如一个实体至少能够与最粗颗粒的 personlocation 等类型相连。这样,利用实体所述的类型,在考虑实体上下文时,就可以一定程度上弥补实体关系的zero-shot问题。此外,本文建立了一个神经网络模型 Hierarchical Type constrained Topic Entity Detection (HTTED),利用问题上下文、实体类型、实体关系的语义,来计算候选实体与问题上下文的相似度,选取最相似的实体,来解决 NER 问题。经过实验证明,HTTED 系统对比传统的系统来说,达到了目前最优的实体识别效果。


贡献


文章的贡献有:

1)利用父子类型的层次结构来解决稀疏类型训练不充分的问题;

2)设计了基于 LSTM HTTED 模型,进行主题实体识别任务;

3)提出的模型通过实验验证取得了 state-of-art 的效果。


方法


⒈本文首先对于父子类型的层次结构进行解释和论述,也是HTTED的核心思想。

本文认为,父类型的语义视为接近于所有子类型的语义之和。例如父类型 organization 的语义,就相当于子类型 companyenterprise 等语义之和。如果类型是由定维向量表示,那么父类型的向量就是子类型的向量之和。此外,由于在数据集中,属于子类型的实体比较稀疏,而父类型的实体稠密,如果不采用文中的方法,那么稀疏的子类型将会得不到充分的训练。若将父类型以子类型表示,那么父子类型都可以得到充分地训练。


1 HTTED模型图

⒉其次是对文中模型的解释。如上图1所示,HTTED 使用了三个编码器来对不同成分编码。

其一,是问答上下文编码器,即将问题经过分词后得到的 tokens,以预训练得到的词向量来表示,并依次输入双向 LSTM 进行第一层的编码;此后,将双向 LSTM 得到的输出拼接,再输入第二层的 LSTM 进行编码,即得到表示问题上下文的 d 维向量 q

其二,是实体类型编码器,即对于某个候选实体e,得到其连接的类型,并将父类型以所有子类型向量之和表示,再将这些类型对应的向量输入一个 LSTM 中进行编码,得到实体类型的 d 维向量 et

其三,是实体关系编码器,即对于某个候选实体 e,得到其所有实体关系,并表示成向量。此外,对于实体关系,将其关系名切割为 tokens,并以词向量表示。然后将实体关系和实体关系名这两种向量,输入一个 LSTM 中进行编码,得到实体关系的d维向量 er

得到三个向量后,文章认为实体的语义可以由实体类型、实体关系近似表达,所以有

而在训练时,设置一个 margin,则 ranking loss 为:

其中γ为超参数。


实验


文章使用单关系问答数据集 SimpleQuestions 和知识图谱 FB2M,并有 112 个具有层次父子关系的实体类型。HTTED 的词向量为经过预训练的,关系向量是初始随机的,而类型向量中,叶子类型初始随机,父类型的向量由子类型的向量累加得到。如下图2所示,为 HTTED 与其他系统的效果对比,其中 -Hierarchy表示 HTTED 去除了实体类型的层次结构表示。


2 主题实体识别效果对比图


由图2可见,HTTED state-of-art 的效果。并且,将实体类型的层次结构去除,HTTED 的准确性下降很多。可见层次类型约束对于该模型的重要性。

由下图3可见,由于使用了层次结构的类型,同名的实体被识别出来,但是与问题上下文更相关的实体都被挑选出来,所以能够正确识别到主题实体。


3 主题实体识别示例图

总结

这篇文章,主要有两个主要工作:其一,是引入了层次结构的实体类型约束,来表达实体的语义,使得与问题上下文相关的实体,更容易被找到;其二,是建立了基于 LSTM HTTED 模型,提高了主题实体识别的效果。

 

 

论文笔记整理:花云程,东南大学博士,研究方向为自然语言处理、知识图谱问答。




OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

转载须知:转载需注明来源“OpenKG.CN”、作者及原文链接。如需修改标题,请注明原标题。

 

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习中的范数规则化之(一)L0、L1与L2范数

机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09qq.com http://blog.csdn.net/zouxy09今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问…

模型训练慢和显存不够怎么办?GPU加速混合精度训练

目录 混合精度训练 理论原理 三大深度学习框架的打开方式 Pytorch Tensorflow PaddlePaddle 混合精度训练 一切还要从2018年ICLR的一篇论文说起。。。 《MIXED PRECISION TRAINING》 这篇论文是百度&Nvidia研究院一起发表的,结合N卡底层计算优化&#x…

陈睿:架构设计之数据库拆分六大原则

架构设计之数据库拆分原则 数据拆分前其实是要首先做准备工作的,然后才是开始数据拆分,我先讲拆分前需要做的事情: 第一步:采用分布式缓存redis、memcached等降低对数据库的读操作。 第二步:如果缓存使用过后&#xf…

(摘要)新基建风口下,今年工业互联网平台将呈现十大新特征

目录一是提升核心能力成为平台发展的主攻方向二是垂直行业和产业集聚区应用爆发式增长四是数据驱动的制造范式正在形成五是平台加速推动大中小企业融通发展六是平台 “双创”生态体系初步形成七是平台采用知识图谱提升核心能力八是CPS和数字孪生崭露头角九是区块链支撑平台构建…

论文浅尝 | 基于知识图谱的子图匹配回答自然语言问题

本文转载自公众号:珞珈大数据。本次论文讲解的是胡森 邹磊 于旭 王海勋 赵东岩等作者写的论文-Answering Natural Language Questions by Subgraph Matching over Knowledge Graphs,主要是分享一些阅读论文的收获,希望能对正在学习自然语…

模式识别之特征提取算法

说明:此处暂时简单介绍下各种特征提取算法,后续完善。 前言:模式识别中进行匹配识别或者分类器分类识别时,判断的依据就是图像特征。用提取的特征表示整幅图像内容,根据特征匹配或者分类图像目标。常见的特征提取算法…

ACL2020 | 对话数据集Mutual:论对话逻辑,BERT还差的很远

一只小狐狸带你解锁 炼丹术&NLP 秘籍本文为MuTual论文作者的特别约稿编辑:rumor酱、夕小瑶前言自然语言处理是人工智能领域的掌上明珠,而人机对话则是自然语言处理领域的最终极一环。以BERT为代表的预训练模型为自然语言处理领域带来了新的春天&…

大型网站系统的特点和架构设计

分布式架构 阿里P8架构师谈:淘宝技术架构从1.0到4.0的架构变迁 优知学院」淘宝技术架构的前世今生(上) 优知学院」淘宝架构的前世今生(下) 揭秘:一位亲历者眼中的淘宝技术架构发展之路 淘宝发展历程最具…

IDC 和浪潮联合发布了《2020-2021 中国人工智能计算力发展评估报告 》

近日,IDC 和浪潮联合发布了《2020-2021 中国人工智能计算力发展评估报告 》(以下简称《报告》)。《报告》指出,中国 AI 基础设施市场规模在 2020 年达到了 39.3 亿美元,到 2024 年预计达到 172. 2 亿美元。 《报告中》…

Linux系统中Oracle数据库使用SELECT语句检索数据(1)实例应用

Linux系统中Oracle数据库使用SELECT语句检索数据(1)实例应用 1,首先切换到Oracle用户,并进入数据库#sql / as sysdba2,启动数据库,并连接样例及表格,启动命令#startup,连接样例#conn scott/tiger3&#xff…

论文浅尝 | 基于动态知识图谱向量表示的对称合作对话代理的学习

链接:https://arxiv.org/abs/1704.07130文本研究了对称合作对话(symmetric collaborative dialogue)任务,任务中,两个代理有着各自的先验知识,并通过有策略的交流来达到最终的目标。本文还产生了一个11k大小的对话数据集。为了对结…

知乎搜索框背后的Query理解和语义召回技术

一只小狐狸带你解锁 炼丹术&NLP 秘籍前言随着用户规模和产品的发展, 知乎搜索面临着越来越大的 query 长尾化挑战,query 理解是提升搜索召回质量的关键。本次分享将介绍知乎搜索在 query term weighting,同义词扩展,query 改写…

JSON-LD 和知识图谱

JSON-LD 正式推荐标准2020年7月发布 2020年7月16日,W3C JSON-LD 工作组发布三份正式推荐标准(W3C Recommendation): JSON-LD 1.1 语法(JSON-LD 1.1)定义了一种基于 JSON 的格式来序列化关联数据。该语法的…

阿里P8架构师谈:分布式架构设计12精讲

分布式架构设计包含: 分布式缓存 分布式消息中间件 分库分表、读写分离 单点登录等 想成为阿里160万年薪的P8架构师?你必须掌握如下6大技能体系! 阿里P8架构师谈:分布式架构系统拆分原则、需求、微服务拆分步骤 阿里P8架构师谈…

论文浅尝 | 弱监督关系抽取的深度残差学习方法

Citation: Pawar, S., Palshikar, G. K., & Bhattacharyya, P. (2017).Relation Extraction : A Survey, 1–51. Retrieved from http://arxiv.org/abs/1712.05191动机近年来基于深度学习方法的远程监督模型取得了不错的效果,但是现有研究大多使用较浅的 CNN 模…

【干货】推荐系统中的机器学习算法与评估实战

【导读】推荐系统是机器学习技术在企业中最成功和最广泛的应用之一。本文作者结合MLMU演讲【1】的Slides,对推荐系统的算法、评估和冷启动解决方案做了详细的介绍。 作者 | Pavel Kordk 编译 | 专知 翻译 | XiaowenMachine Learning for Recommender systems — P…

Google | 突破瓶颈,打造更强大的Transformer

一只小狐狸带你解锁炼丹术&NLP秘籍作者:苏剑林 (来自追一科技,人称“苏神”)前言《Attention is All You Need》一文发布后,基于Multi-Head Attention的Transformer模型开始流行起来,而去年发布的BERT模型更是将Transformer模…

新媒体中的MCN机构是什么意思

主要转自知乎:https://www.zhihu.com/question/318661288 有删改。 什么是MCN?MCN(Multi-Channel Network)是舶来品,是一种多频道网络的产品形态,将PGC内容联合起来,在资本的有力支持下&#x…

论文浅尝 | 用增强学习进行推理:问答与知识库完善(KBC)

本文转载自公众号:程序媛的日常。利用知识库、知识图谱来完善问答系统,有非常广阔的实际应用场景。当用户提出一个问题时,有时候仅用知识库中的某一个三元组事实(fact triple)即可回答。但当问题比较复杂时&#xff0c…

阿里P8架构师谈:高并发网站的监控系统选型、比较、核心监控指标

在高并发分布式环境下,对于访问量大的业务、接口等,需要及时的监控网站的健康程度,防止网站出现访问缓慢,甚至在特殊情况出现应用服务器雪崩等场景,在高并发场景下网站无法正常访问的情况,这些就会涉及到分…