阿里P8架构师谈:分布式架构设计12精讲

分布式架构设计包含:
分布式缓存
分布式消息中间件
分库分表、读写分离
单点登录等

想成为阿里160万年薪的P8架构师?你必须掌握如下6大技能体系!

阿里P8架构师谈:分布式架构系统拆分原则、需求、微服务拆分步骤 

阿里P8架构师谈:高并发与多线程的关系、区别、高并发的技术 

阿里P8架构师谈:MongoDB、Hbase、Redis等NoSQL优劣势、应用场景

阿里P8架构师谈:NoSQL和SQL的区别,NoSQL的使用场景和选型比较

阿里P8架构师谈:单点登录的原理、来源、实现、以及技术方案比较

阿里P8架构师谈:负载均衡的原理、分类、实现架构,以及使用场景

阿里P8架构师谈:数据库分库分表、读写分离的原理实现,使用场景

阿里P8架构师谈:架构设计之数据库拆分六大原则

阿里P8架构师谈:常见分布式文件存储介绍、选型比较、架构设计

阿里P8架构师谈:消息中间件介绍、典型使用场景、以及使用原则

阿里P8架构师谈:双11秒杀系统如何设计?

阿里P8架构师谈:数据库、JVM、缓存、SQL等性能调优方法和原则


money.jpg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480679.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文浅尝 | 弱监督关系抽取的深度残差学习方法

Citation: Pawar, S., Palshikar, G. K., & Bhattacharyya, P. (2017).Relation Extraction : A Survey, 1–51. Retrieved from http://arxiv.org/abs/1712.05191动机近年来基于深度学习方法的远程监督模型取得了不错的效果,但是现有研究大多使用较浅的 CNN 模…

【干货】推荐系统中的机器学习算法与评估实战

【导读】推荐系统是机器学习技术在企业中最成功和最广泛的应用之一。本文作者结合MLMU演讲【1】的Slides,对推荐系统的算法、评估和冷启动解决方案做了详细的介绍。 作者 | Pavel Kordk 编译 | 专知 翻译 | XiaowenMachine Learning for Recommender systems — P…

Google | 突破瓶颈,打造更强大的Transformer

一只小狐狸带你解锁炼丹术&NLP秘籍作者:苏剑林 (来自追一科技,人称“苏神”)前言《Attention is All You Need》一文发布后,基于Multi-Head Attention的Transformer模型开始流行起来,而去年发布的BERT模型更是将Transformer模…

新媒体中的MCN机构是什么意思

主要转自知乎:https://www.zhihu.com/question/318661288 有删改。 什么是MCN?MCN(Multi-Channel Network)是舶来品,是一种多频道网络的产品形态,将PGC内容联合起来,在资本的有力支持下&#x…

论文浅尝 | 用增强学习进行推理:问答与知识库完善(KBC)

本文转载自公众号:程序媛的日常。利用知识库、知识图谱来完善问答系统,有非常广阔的实际应用场景。当用户提出一个问题时,有时候仅用知识库中的某一个三元组事实(fact triple)即可回答。但当问题比较复杂时&#xff0c…

阿里P8架构师谈:高并发网站的监控系统选型、比较、核心监控指标

在高并发分布式环境下,对于访问量大的业务、接口等,需要及时的监控网站的健康程度,防止网站出现访问缓慢,甚至在特殊情况出现应用服务器雪崩等场景,在高并发场景下网站无法正常访问的情况,这些就会涉及到分…

斯坦福CS224n追剧计划【大结局】:NLP和深度学习的未来

一只小狐狸带你解锁炼丹术&NLP秘籍简介Stanford CS224n追剧计划是由夕小瑶的卖萌屋发起的开源开放NLP入门项目,借助github和微信群为大家提供同期小伙伴打卡讨论、内容沉淀、作业笔记和FAQ共享、连线斯坦福等服务。关于该计划的详请见这里 。1. Github项目地址h…

KubeVela 高可扩展的云原生应用平台与核心引擎

https://www.oschina.net/news/121015/kubevela-open-source 目录什么是 KubeVela ?KubeVela 解决了什么问题?1. 应用开发者眼中的 KubeVela一个 Appfile 示例2. 平台工程师眼中的 KubeVela3. KubeVela vs 经典 PaaS快速入门安装KubeVela1. 安装Kubernet…

打造工业级推荐系统(三):推荐系统的工程实现与架构优化

打造工业级推荐系统(三):推荐系统的工程实现与架构优化 gongyouliu 阅读数:4148 2019 年 4 月 26 日导读:个性化推荐系统,简单来说就是根据每个人的偏好推荐他喜欢的物品。互联网发展到现在,推荐…

2020年跨行业跨领域工业互联网平台

2020年跨行业跨领域工业互联网平台 来源:工信部 2020年12月,工信部信发司公示“2020年跨行业跨领域工业互联网平台”。公示的双跨平台共15家,比2019年十大双跨平台增长50%。新增的平台为:腾讯WeMake工业互联网平台,忽…

阿里P8架构师谈:什么是缓存雪崩?服务器雪崩的场景与解决方案

什么是应用服务雪崩 雪崩问题 分布式系统都存在这样一个问题,由于网络的不稳定性,决定了任何一个服务的可用性都不是 100% 的。当网络不稳定的时候,作为服务的提供者,自身可能会被拖死,导致服务调用者阻塞&#xff0c…

2018 年,NLP 研究与应用进展到什么水平了?

AI 前线导读: 随着人工智能的再次兴起,尤其是深度学习的成功应用,自然语言处理(NLP)也逐渐受到了科研研所、高校以及相关企业的关注,也成为了人工智能重点研究的课题之一。NLP 的主要目标是解决人机对话中的…

论文浅尝 | 基于RNN与相似矩阵CNN的知识库问答

链接:https://arxiv.org/pdf/1804.03317.pdf概述当前大部分的 kbqa 方法为将 kb facts 与 question 映射到同一个向量空间上,然后计算相似性. 但是这样的做法会忽视掉两者间原本存在的单词级别的联系与交互. 所以本文提出一种网络结构 ARSMCNN,既利用到语义的信息, 又利用到单词…

斯坦福大学最甜网剧:知识图谱CS520面向大众开放啦!

一只小狐狸带你解锁炼丹术&NLP秘籍受本次疫情的影响,斯坦福大学的2020春季知识图谱课程——CS520面向公众线上开放啦!连课名都是爱你的形状!简单翻译一下重点:今年的CS520面向公众开放,大家可以通过远程视频软件Zo…

一篇文章详解大数据技术和应用场景

“ 本文作者 陈睿 ,优知学院创始人 新技术、新趋势往往趋之若鹜却又很难说的透彻,希望这篇文章能让大家完整的理解什么是大数据:该篇包含:大数据、技术、场景应用以及大数据的岗位。 什么是大数据 说起大数据,估计大家都觉得只…

推荐标星 100 K 的 GitHub 开源项目

推荐标星 100 K 的 GitHub 开源项目 原文见:推荐 10 个标星 100 K 的 GitHub 开源项目 以下摘录部分: Build Your Own X (GitHub Star:102,000):汇集了诸多优质资源教你构建属于自己的东西,主要分为增强现实、区块链…

对话周明:回望过去,展望未来,NLP有哪些发展趋势?

HomeBlog 对话周明:回望过去,展望未来,NLP有哪些发展趋势? 2019年2月15日 by 打不死的小强 AI 新闻 0 comments 周明博士是微软亚洲研究院副院长、国际计算语言学协会(ACL)主席、中国计算机学会理事、中…

阿里P8架构师谈:MongoDB、Hbase、Redis等NoSQL优劣势、应用场景

NoSQL的四大种类 NoSQL数据库在整个数据库领域的江湖地位已经不言而喻。在大数据时代,虽然RDBMS很优秀,但是面对快速增长的数据规模和日渐复杂的数据模型,RDBMS渐渐力不从心,无法应对很多数据库处理任务,这时NoSQL凭借…

研讨会 | 知识图谱助力图书馆知识管理与智慧服务研讨会

知识图谱是大数据时代重要的知识表示方式之一,也是人工智能技术的重要支撑,在智能检索、数据分析、自动问答、知识推荐、知识管理等领域有着广泛的应用前景,为知识创新管理带来了新机遇。由于知识图谱实现了对象识别、文本理解、关系推理、机…

高效利用无标注数据:自监督学习简述

一只小狐狸带你解锁 炼丹术&NLP 秘籍 作者:huyber来源:https://zhuanlan.zhihu.com/p/108906502BERT的大热让自监督学习成为了大家讨论的热点,但其实word2vec和自编码器也都属于自监督学习范畴。本文通过整理自监督学习的一系列工作&…