论文浅尝 | 利用类比推理优化知识图谱向量表示

640?wx_fmt=png

https://arxiv.org/pdf/1705.02426.pdf

 

本文的主要创新点就是把类比推理应用到 KG embedding 中,通过对模型的 score function 添加某些约束来捕获 KG 中类比结构的信息,进而优化 KG 中实体和关系的 embedding 表示,并在 FB15K WN18 数据集上达到 state-of -the-art 性能。


Analogical Structure

什么是类比结构?以 word embedding中最著名的一句话为例,man is to king as woman is to queen,用 abcd 分别表示 man, king, woman, queen 四个实体,用 r r' 表示 crown male->female 关系,这就可以得到四个三元组

640?wx_fmt=png

可视化一下,就可以得到一个平行四边形结构,捕获这个结构的信息也就是本文的 motivation,且更复杂的类比结构的基本组成单元就是这个平行四边形结构。

640?wx_fmt=png

对于线性映射来说,一个理想的特性,就是所有有相同起点和终点的有向图,都形成了所谓的compositional equivalence,在上图中就是640?wx_fmt=png,且若关系集合R中任意两个关系都满足compositionalequivalence,则称R是一个commutingfamily


Method

本文将关系 r 视为线性映射,即给定三元组 (s,r,o),作者希望对于所有有效的三元组,都能满足640?wx_fmt=png,满足的程度就用一个 score function 表示,模型的目标就是学到恰当的 v W,来让这个 score function 给有效的三元组高分,无效的三元组低分。为什么用线性映射而不用transE那样的加法映射呢?作者的看法是,用矩阵定义的线性映射表达能力比用向量定义的加法映射更强。

640?wx_fmt=png

为了捕获 KG 中类比结构的信息,本文在objective function上加入了 Normal Matrixcompositional equivalence 的约束,而后者就是640?wx_fmt=png,即在线性映射上的具体实现,最后得到的 objective function 就是

640?wx_fmt=png

Why Normal Matrix

引理1,对于任意实正规矩阵 A,存在一个实正交矩阵 Q 和分块对角矩阵 B,满足 A=QBQT,其中 B 的每个对角块要么是个实数,要么是个2维实矩阵,x y都是实数。这个引理表明任意一个实正规矩阵都可以分块对角化。

引理2,若一系列实正规矩阵组成了一个 commuting family,那么它们可以用同一个 Q 分块对角化。这个引理表明,若一个稠密关系矩阵集合{Wr}相互可交换,那么就可以同时被分块对角化成一个稀疏矩阵集合{Br}。

结合以上两个性质,可以对 score function 进行推导,过程如下

640?wx_fmt=png

即对于任意目标函数7的解 (v*,W*) ,都有对应的 (u*,B*) 满足

640?wx_fmt=png

目标函数简化成了这个样子,其中 B表示对角线上有n个实数的m阶对角方阵。


Unified View of Representative Methods

作者也证明了本文模型是 unified method,以 DistMult为例,它的 score func

640?wx_fmt=png

实际上这就是 n=m ANALOGY版本,其中640?wx_fmt=png


Experiments

实验用的数据集是FB15KWN18,作者用了19baseline做对比,metrics用的也是常用的MRRHits@k。由下表可以知道FB15K的关系数非常多,因此对其建模也更难,KG中包含的类比结构也更多,而在这个数据集上,ANALOGY的表现超过了所有baseline模型,这证明了捕获类比结构信息的作用。

640?wx_fmt=png

640?wx_fmt=png

而下图则表明在所有指标上,ANALOGY的表现都超过了 DistMult,ComplExHolE,且这三个是ANALOGY的特例。

640?wx_fmt=png

论文笔记整理:汪寒,浙江大学硕士,研究方向为知识图谱,自然语言处理。



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480647.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推荐 10 个饱受好评且功能独特的开源人工智能项目

来自:开源中国链接:https://my.oschina.net/editorial-story/blog/1592254推荐 10 个饱受好评且功能独特的开源人工智能项目关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让…

如何以初学者角度写好一篇国际学术论文?

一只小狐狸带你解锁 炼丹术&NLP 秘籍人工智能顶会论文之争越来越激烈了,CVPR、AAAI、ICLR等各大会议虽然录取率逐年降低,但是投稿论文数量却在逐年增加。虽说发论文不是衡量一位学者的学术能力的唯一标准,但确是极为重要的标准。一篇好的…

领域应用 | 如何将知识图谱特征学习应用到推荐系统?

本文转载自公众号:微软研究院AI头条。 编者按:在上周发表的“推荐算法不够精准?让知识图谱来解决”一文中,我们为大家介绍了日常生活中几乎每天都会用到的推荐系统,以及用来提高推荐系统精准性、多样性和可解释性的推荐…

阿里P8架构师谈:MySQL行锁、表锁、悲观锁、乐观锁的特点与应用

我们在操作数据库的时候,可能会由于并发问题而引起的数据的不一致性(数据冲突)。如何保证数据并发访问的一致性、有效性,是所有数据库必须解决的一个问题,锁的冲突也是影响数据库并发访问性能的一个重要因素&#xff0…

谷歌、微软、OpenAI等巨头七大机器学习开源项目 看这篇就够了

在人工智能行业,2015-2016 出现了一个不同寻常的趋势:许多重量级机器学习项目纷纷走向开源,与全世界的开发者共享。加入这开源大潮的,不仅有学界师生,更有国内外的互联网巨头们:国内有百度和腾讯&#xff0…

推荐系统的发展与简单回顾

“本文结合百度和支付宝两段推荐系统相关的实习经历,针对工业界的模型发展做了简单梳理与回顾,涵盖表示学习,深度学习,强化学习知识图谱以及多任务学习”表示学习和深度学习在推荐系统中的应用是目前工业界比较成熟的,但是与强化学…

论文浅尝 | 嵌入常识知识的注意力 LSTM 模型用于特定目标的基于侧面的情感分析...

MaY, Peng H, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//AAAI. 2018.任务简介特定目标的基于侧面的情感分析,在原来基于侧面的情感分析的基础上,进一步挖掘细粒度的信息&am…

阿里P8架构师谈:MySQL有哪些存储引擎,各自的优缺点,应用场景

经常面试都会问到MYSQL有哪些存储引擎,以及各自的优缺点。今天主要分享常见的存储引擎:MyISAM、InnoDB、MERGE、MEMORY(HEAP)、BDB(BerkeleyDB)等,以及最常用的MyISAM与InnoDB两个引擎 &#xf…

TensorFlow 全网最全学习资料汇总之TensorFlow的技术应用

谷歌于2015年11月发布了全新人工智能系统TensorFlow。该系统可被用于语音识别或照片识别等多项机器深度学习领域,主要针对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行…

13个offer,8家SSP,谈谈我的秋招经验

本文转载自公众号“夕小瑶的卖萌屋”,专业带逛互联网算法圈的神操作 -----》我是传送门 关注后,回复以下口令: 回复【789】 :领取深度学习全栈手册(含NLP、CV海量综述、必刷论文解读) 回复【入群】&#xf…

领域应用 | 知识图谱的技术与应用

本文转载自公众号:贪心科技。作者 | 李文哲,人工智能、知识图谱领域专家导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的…

阿里P8架构师谈:MySQL慢查询优化、索引优化、以及表等优化总结

MySQL优化概述 MySQL数据库常见的两个瓶颈是:CPU和I/O的瓶颈。 CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候。 磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在网络上,那么查询量相当大的时候那么平瓶颈就…

医药领域知识图谱快速及医药问答项目

QABasedOnMedicaKnowledgeGraph self-implement of disease centered Medical graph from zero to full and sever as question answering base. 从无到有搭建一个以疾病为中心的一定规模医药领域知识图谱,并以该知识图谱完成自动问答与分析服务。 项目介绍 本项…

一文详解深度学习在命名实体识别(NER)中的应用

近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中&#xff0…

如何做机器学习项目规划?一个事半功倍的checklist

一只小狐狸带你解锁 炼丹术&NLP 秘籍前言在接到一个新项目的时候,对其进行合理的安排和规划往往会有事半功倍的效果。下面是从规划30 多个机器学习项目的经验中,提炼出的一个简单有效的checklist。一起来看看叭~项目动机明确你的项目的更广泛的意义。…

论文浅尝 | 一种用于新闻推荐的深度知识感知网络

Citation: Wang H, Zhang F, Xie X, et al. DKN: Deep Knowledge-Aware Networkfor News Recommendation[J]. 2018.Published at: The 27th International Conference on World Wide Web (WWW18)URL:https://arxiv.org/pdf/1801.08284.pdfMotivation推荐系统最初是为…

MySQL数据库主从同步的3种一致性方案实现,及优劣比较

数据主从同步的由来 互联网的很多业务,特别是在高并发的场景下,基本都是读远远大于写,如果数据库读和写的压力都同在一台主机上,这显然不太合理。 于是,把一台数据库主机分为单独的一台写主库(主要负责写操…

中文复合(条件事件、因果事件、顺承事件、反转事件)事理图谱构建项目

ComplexEventExtraction chinese compound event extraction,中文复合事件抽取,包括条件事件、因果事件、顺承事件、反转事件等事件抽取,并形成事理图谱。 项目地址:https://github.com/liuhuanyong/ComplexEventExtraction 关于…

对话系统的简单综述及应用智能客服

https://zhuanlan.zhihu.com/p/52899436 对话系统的简单综述及应用智能客服“天猫精灵,放歌”,”送你一首好听的歌《XXX》“,《XXX》音乐响起...相信有天猫精灵的用户对此场景都不陌生,或者语音操作其他智能音箱设备,比…

硬核推导Google AdaFactor:一个省显存的宝藏优化器

一只小狐狸带你解锁炼丹术&NLP秘籍作者:苏剑林(来自追一科技,人称“苏神”)前言自从GPT、BERT等预训练模型流行起来后,其中一个明显的趋势是模型越做越大,因为更大的模型配合更充分的预训练通常能更有效…