领域应用 | 从数据到智慧,知识图谱如何推动金融更智能?

本文转载在公众号:恒生技术之眼


在《人工智能+知识图谱:如何规整海量金融大数据?》一文中,笔者曾提到,面向人工智能的大数据治理,势必能有效支撑智能金融从感知智能向认知智能变革。这是因为目前在资本市场中,大数据的治理存在一些问题,比如非结构化数据的处理与使用、实时敏捷的数据处理与使用以及多源异构的数据孤岛等。

 

而知识图谱在智能金融中扮演的正是数据加工、处理的角色,能够为数据服务提供相应的支持。比如对于多源异构的数据,知识图谱能做到比较好的集成,通过统一的数据表示与建模、统一数据处理与存储来降低数据的使用难度。

 

正所谓“玉不琢不成器”,数据是金融的生命线,经过知识图谱的“琢磨”,大数据治理会有更多成果呈现出来,从而更好地赋能智能金融,助力金融机构实现数据驱动下的业务运营和创新。那么想要达到这样的目的,资本市场的知识图谱应该如何构建呢?


资本市场知识图谱构建的核心目标

 

有目标,才有方向。在资本市场中,人们都在关注资产的价格、走势以及相关的分析,这是一个永恒的话题。所以资本市场知识图谱的建立应该有两个核心目标:

 

核心目标1:企业画像&企业分析

 

以前,我们为企业做信息规整的时候,以集合企业的360度属性信息为目标。而通过知识图谱技术,我们可以改变这种思路,以企业为中心,把围绕企业的实体关系建立起来,比如企业与企业的关系、企业与人的关系、企业与行业的关系、企业与舆情事件的关系、企业与宏观要素的关系等等。当我们将企业放在关系网络里,把种种关系都建立起来的时候,我们会发现,企业的画像也就完成了。

 

企业分析也是从关系分析开始的。在关系网络具备的情况下,我们可以以关系分析为起点进行企业的分析,一步步达到我们最终所需的分析目标和结果。

 

核心目标2:舆情事件基于知识图谱的传播

 

为企业做画像,是相对静态的一个结果,因为汇集的很多都是关于企业的静态信息。而舆情事件在每天的新闻、公告、研报里都会发生,是相对动态的。那么舆情事件有没有传递效应?有什么样的传递效应?这也是我们在资本市场中构筑知识图谱时需要考虑的。

 

资本市场知识图谱构建的关键点

 

有了这两个核心目标,资本市场的知识图谱应该怎么构建呢?对于资本市场来说,知识图谱的构建也需要知识建模、知识获取、知识融合、知识存储、知识展示、知识计算、知识应用等环节,这与传统行业是一样的。不一样的地方在于以下几个关键点:

 

场景驱动按需迭代

 

在金融行业,新的数据源源不断地产生、汇集,那么我们在构建知识图谱之时,需要以场景驱动来解决这个问题,在数据建模上不断地更新,先建立Schema再去寻找相应的数据,集合起来之后对特定的应用场景提供相应的数据服务。随着Schema 1.0、2.0、3.0不断演化,一个企业级的知识图谱可能就建立起来了。

 

充分利用第三方数据

 

起点不一样,是资本市场知识图谱与其他领域知识图谱的一个不同点。在资本市场中,有很多第三方数据公司为证券公司、基金公司等金融机构提供数据服务,充分利用第三方数据对于知识图谱的构建非常重要。这个起点有什么影响呢?一方面,第三方数据公司会通过自然语言处理等技术做一些数据的梳理工作,其数据结构质量会比较高,基于高质量数据来构建的知识图谱,质量也会比较好,如果我们放弃这种方式,从大规模自动建立开始做,很难达到同等的效果;另一方面,第三方数据也是在不断更新的,因此在知识获取和知识融合方面,第三方数据可以帮我们解决冷启动的问题。

 

事件与时序的支持

 

事件是相对动态的,动态的新闻、资讯对资产价格有非常大的影响,所以我们在资本市场的知识图谱构建中,包括建模、分析、展示、存储等各个环节,都要充分考虑到对事件和时序支持。

 

灵活的图展示方式

 

资本市场的知识图谱对于展示有一些不一样的需求,比如可不可以按照产业链的方式把某一行业的上下游全部展示出来,能不能按照股权结构把实际受益人的图谱关系展示出来等等,这些都是金融领域的图展示需要做到的。

资本市场知识图谱的应用场景

 

从数据的关系网络支撑这个角度来看,知识图谱作为数据治理的工具、手段,可以助力原有的传统金融业务实现智能化的升级。另外,知识图谱与机器学习等技术的结合,也会帮助原有的模型实现升级。那么具体来看,知识图谱能够对现在的金融业务产生哪些方面的赋能呢?

基础赋能


▲基础数据服务:把知识图谱当做数据库、知识库,用KBQA(Knowledge Base Question Answering)的方式,为金融问答系统、智能客服系统以及金融智能搜索等业务提供相应的支持。

 

▲关系穿透/挖掘服务:知识图谱对于关系穿透、挖掘的能力,使其非常适合找到一致行动人、实际控制人以及资本系挖掘,从而有助于关联交易关联账号识别、信息批露等风控控制,并且能够对风控风险的传播和原因做深入分析,这在合规风控领域的应用有非常大的空间。

 

▲建模/推理服务:知识图谱把一些关系的数据梳理得比较清楚,这对于营销服务领域来说是一次革新的机会。无论从数据的提供层面,还是从模型的建立层面,知识图谱在KYC/KYP(Know Your Customer / Know Your Product)、产品服务推荐、智能投顾等领域都会带来非常大的价值。


进阶赋能


▲基于知识图谱事件传播影响的智能资讯服务

 

这是静态与动态知识图谱能够结合并产生金融服务的一个场景。目前对于头部金融机构的终端服务来说,智能资讯已经是一种标配,可以把相应的资讯推送给相应的标的持有人,进行风险警示或投资机会提示。

 

在知识图谱技术的加持下,智能资讯服务能够做进一步的延伸,因为企业是处在关系网络之中的,任何一个事件的传递都会沿着关系网络传播。比如“行业的原材料价格上涨”这样一件事,会在企业的关系网络里沿着企业的上下游来进行传递,据此我们可以把涉及到的相关企业从知识图谱中找出来,命中事件传播波动相关性标的、事件要素投研逻辑相关性标的等,从而对相应投资人进行相应标的的智能资讯服务,例如持仓/自选股预警、投顾等辅助服务。

 

▲基于知识图谱的智能投研:分析师工作平台

 

智能投研是知识图谱能够有较多应用的一个场景。每个行业分析师都有一套行业产业链逻辑,并且依据这套逻辑准确定位市场现状、动态,预测并制作市场模型。借助知识图谱,这套逻辑可以演化成一个投研工具,一个智能投研的分析平台,满足分析师私有化、个性化的要求,做到能够自动添加实体(公司)、关系(产业链条)、属性(私有数据),自定义投研逻辑与预警规则,帮助分析师进行产业链与企业关系的分析。

 

展望

 

在当下的智能金融时代,一方面我们需要着手进行面向人工智能的大数据治理,在数据层面上通过知识图谱将原有的金融数据做再一次的加工、整理;另一方面,一个金融机构往往动辄几十套、上百套系统,如何把知识图谱等人工智能技术的服务能力开放给传统的业务系统,进行面向人工智能的服务治理,这也是我们必须面对的一个挑战。


此外,浙江大学陈华钧教授曾提到过知识图谱的数据源问题,由于数据太容易被复制了,一旦发生数据外泄很容易侵犯个人隐私与数据所有权,所以在知识图谱领域,我们也可以考虑结合区块链技术来对数据来源进行溯源。现在知识图谱更多是集中式的,未来可能有更多分散式的知识图谱架构出现,来帮助我们解决这个问题。


300多年,英国哲学家培根曾说,知识就是力量。而随着人工智能时代的启幕,我们或许也可以说:知识图谱就是力量。知识图谱起于搜索,又不止于搜索,它是底层的,是无处不在的,支撑着人工智能在各个场景中的应用。未来,知识图谱必将让金融更智能,在更多的金融业务场景中发挥更大的价值。



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480201.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021届秋招算法岗真的要灰飞烟灭了吗?

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 不拖更的夕小瑶2014年末入坑AI,一路见证了AI行业的快速起飞、爆炸、焦虑和冷却。小夕前几天在知乎上看到一个问题《如何看待2021年秋招算法岗灰飞烟灭》被顶上了热榜。有点感叹,怎…

万字长文:近年来学界、业界视角下的“事理图谱”发展总结与思考

一、引言 大部分技术都会经历从提出,到验证,再到修正,再到落地的这样一个过程。事理图谱这个概念从国内学者自2017年提出到现在,已经经历了近4年的时间,那么在这四年的时间里,事理图谱目前处于一个什么…

Redis系列教程(二):详解Redis的存储类型、集群架构、以及应用场景

高并发架构系列 高并发架构系列:数据库主从同步的3种一致性方案实现,及优劣比较 高并发架构系列:Spring Cloud的核心成员、以及架构实现详细介绍 高并发架构系列:服务注册与发现的实现原理、及实现优劣势比较 高并发架构系列&a…

当知识图谱遇上推荐系统之PippleNet模型(论文笔记二)

RippleNet | Propagating User Preferences on the Knowledge 类别:联合学习 将知识图谱特征学习和推荐算法的目标函数结合,使用端到端(end-to-end)的方法进行联合学习。 [论文下载链接]https://arxiv.org/abs/1803.03467 1、…

POJ 3690 找星座(2D匹配)(未解答)

文章目录1. 题目信息1.1 题目链接1.2 题目大意1.3 解题思路2. 代码2.1 Time Limit Exceeded 代码2.2 Time Limit Exceeded 代码2.3 Time Limit Exceeded 代码1. 题目信息 1.1 题目链接 http://poj.org/problem?id3690 1.2 题目大意 给定大的矩阵(天空的样子&am…

综述 | 事件抽取及推理 (上)

本文转载自公众号:知识工场。 事件概要事件是一种重要的知识,近年来,越来越多的工作关注于从开放域或领域文本中抽取结构化事件知识。同时,除了本身就很困难的…

下载 | 李宏毅:1 天搞懂深度学习,我总结了 300 页 PPT

《1 天搞懂深度学习》,300 多页的 ppt,台湾李宏毅教授写的,非常棒。不夸张地说,是我看过最系统,也最通俗易懂的,关于深度学习的文章。这份 300 页的 PPT,被搬运到了 SlideShare 上,下…

史上最全Redis面试49题(含答案):哨兵+复制+事务+集群+持久化等

最全面试题答案系列 史上最强多线程面试44题和答案:线程锁线程池线程同步等 最全MySQL面试60题和答案 史上最全memcached面试26题和答案 史上最全Spring面试71题与答案 今天主要分享redis最全答案系列 Redis主要有哪些功能? 1.哨兵(Sen…

DTW动态时间规整算法

原文地址:https://blog.csdn.net/qcyfred/article/details/53824507 https://zhuanlan.zhihu.com/p/43247215 动态时间规整(DTW)算法简介相忘天涯,深藏于心19 人赞同了该文章DTW最初用于识别语音的相似性。我们用数字表示音调高低…

POJ 3461 字符串匹配(KMP / 哈希(有推导))

文章目录1. 题目1.1 题目链接1.2 题目大意2. Accepted代码2.1 KMP解法2.2 哈希法(有推导过程)1. 题目 1.1 题目链接 http://poj.org/problem?id3461 类似题目:LeetCode 30. 串联所有单词的子串(字符串哈希) 1.2 题…

莫比乌斯:百度凤巢下一代广告召回系统

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 江城编 | 夕小瑶今天聊聊百度在最顶级的数据挖掘会议KDD2019的计算广告track上提出的query-ad匹配模型——莫比乌斯(MOBIUS)。这也是百度凤巢下一代广告召回系统的内部代号&#…

当知识图谱遇上推荐系统之MKR模型(论文笔记三)

Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation 类别:交替学习 将知识图谱特征学习和推荐算法视为两个分离但又相关的任务,使用多任务学习的框架进行交替学习。 1、背景 MKR是一个通用的、端对端的深度推荐框架&#xf…

关于话题演化关系网络生成的路线思考:从话题聚类到话题网络展示

话题演化关系网络生成,是实现事件演化追踪的一个重要方法。通过对文本话题进行聚类、内容处理、话题演化关联、话题演化网络的展示,能够在一定程度上为用户揭示出一个事件发展的情况。本文就笔者对该方向的实现路线思考进行总结,分享给大家。…

综述 | 事件抽取及推理 (下)

本文转载在公众号:知识工场 。 上篇事件抽取及推理的推文已经介绍了事件抽取的基本方法,本篇主要介绍事件推理的相关工作。就目前来看,事件方向相关的研究还是以事件抽取为主流任务,当前大多都是在模型的框架和优化方面进行研究。…

Redis系列教程(三):如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题

Java相关的面试都会问到缓存的问题:史上最全Redis面试49题(含答案):哨兵复制事务集群持久化等,除此之外还会问到缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等不常见的问题,但却是非常重要的问题,今…

随机森林:提供银行精准营销解决方案

原文地址:https://blog.csdn.net/weixin_34233679/article/details/88480912 本例是根据科赛网练习赛进行练手,学习巩固一下随机森林建模以及应用。 赛题描述本练习赛的数据,选自UCI机器学习库中的「银行营销数据集(Bank Marketing Data Set)…

谁说2021届秋招算法岗一定要灰飞烟灭啦?

没错,这是一碗鸡汤,希望肝完这碗鸡汤的师弟师妹们就不要过度焦虑啦~理性上车,理性下车,希望萌新们都能遇到最适合自己的坑位2014年末入坑AI,一路见证了AI行业的快速起飞、爆炸、焦虑和冷却。小夕前几天在知…

论文浅尝 | 基于深度强化学习的远程监督数据集的降噪

论文链接:https://arxiv.org/pdf/1805.09927.pdf来源:ACL2018Motivation:远程监督是以一种生成关系抽取训练样本的方法,无需人工标注数据。但是远程监督引入了噪音,即存在很多的假正例。本文的出发点非常简单&#xff…

字符串匹配算法(AC自动机 Aho-Corasick)

文章目录1. 多模式串匹配2. 经典多模式串匹配--AC自动机2.1 AC自动机构建2.2 在AC自动机上匹配主串2.3 复杂度分析3. python包1. 多模式串匹配 前面学的BF、RK、BM、KMP都是单模式串匹配算法(一个模式串,一个主串)多模式串匹配,即…

Redis系列教程(五):Redis哨兵、复制、集群的设计原理,以及区别

前一篇文章高并发架构系列:Redis为什么是单线程、及高并发快的3大原因详解谈了Redis高并发快的3个原因,本篇主要谈Redis的高可用,两篇合起来就可以把redis的高并发和高可用搞清楚了。 谈到Redis服务器的高可用,如何保证备份的机器…