PyTorch Trick集锦

文 | z.defying@知乎

来源 | https://zhuanlan.zhihu.com/p/76459295


前言

本文整理了13则PyTorch使用的小窍门,包括了指定GPU编号、梯度裁剪、扩展单张图片维度等实用技巧,能够帮助工作者更高效地完成任务。

1、指定GPU编号
2、查看模型每层输出详情
3、梯度裁剪
4、扩展单张图片维度
5、one hot编码
6、防止验证模型时爆显存
7、学习率衰减
8、冻结某些层的参数
9、对不同层使用不同学习率
10、模型相关操作
11、Pytorch内置one hot函数
12、网络参数初始化
13、加载内置预训练模型

1、指定GPU编号

  • 设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0os.environ["CUDA_VISIBLE_DEVICES"] = "0"

  • 设置当前使用的GPU设备为0,1号两个设备,名称依次为 /gpu:0/gpu:1os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。

指定GPU的命令需要放在和神经网络相关的一系列操作的前面。

2、查看模型每层输出详情

Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。使用很简单,如下用法:

from torchsummary import summary
summary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置。

3、梯度裁剪

import torch.nn as nnoutputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

  • parameters – 一个基于变量的迭代器,会进行梯度归一化

  • max_norm – 梯度的最大范数

  • norm_type – 规定范数的类型,默认为L2

@不椭的椭圆 提出:梯度裁剪在某些任务上会额外消耗大量的计算时间,可移步评论区查看详情。

4、扩展单张图片维度

因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:

import cv2
import torchimage = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())img = image.view(1, *image.size())
print(img.size())# output:
# torch.Size([h, w, c])
# torch.Size([1, h, w, c])

import cv2
import numpy as npimage = cv2.imread(img_path)
print(image.shape)
img = image[np.newaxis, :, :, :]
print(img.shape)# output:
# (h, w, c)
# (1, h, w, c)

或(感谢 @coldleaf 的补充)

import cv2
import torchimage = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())img = image.unsqueeze(dim=0)  
print(img.size())img = img.squeeze(dim=0)
print(img.size())# output:
# torch.Size([(h, w, c)])
# torch.Size([1, h, w, c])
# torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。

5、独热编码

在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torch
class_num = 8
batch_size = 4def one_hot(label):"""将一维列表转换为独热编码"""label = label.resize_(batch_size, 1)m_zeros = torch.zeros(batch_size, class_num)# 从 value 中取值,然后根据 dim 和 index 给相应位置赋值onehot = m_zeros.scatter_(1, label, 1)  # (dim,index,value)return onehot.numpy()  # Tensor -> Numpylabel = torch.LongTensor(batch_size).random_() % class_num  # 对随机数取余
print(one_hot(label))# output:
[[0. 0. 0. 1. 0. 0. 0. 0.][0. 0. 0. 0. 1. 0. 0. 0.][0. 0. 1. 0. 0. 0. 0. 0.][0. 1. 0. 0. 0. 0. 0. 0.]]

注:第11条有更简单的方法。

6、防止验证模型时爆显存

验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad():# 使用model进行预测的代码pass

感谢@zhaz 的提醒,我把 torch.cuda.empty_cache() 的使用原因更新一下。这是原回答:

Pytorch 训练时无用的临时变量可能会越来越多,导致 out of memory ,可以使用下面语句来清理这些不需要的变量。

官网上的解释为:

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible innvidia-smi. torch.cuda.empty_cache()

意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。而 torch.cuda.empty_cache() 的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi命令可见。注意使用此命令不会释放tensors占用的显存。对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。更详细的优化可以查看 优化显存使用 和 显存利用问题。

7、学习率衰减

import torch.optim as optim
from torch.optim import lr_scheduler# 训练前的初始化
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1)  # # 每过10个epoch,学习率乘以0.1# 训练过程中
for n in n_epoch:scheduler.step()...

可以随时查看学习率的值:optimizer.param_groups[0]['lr']。还有其他学习率更新的方式:

1、自定义更新公式:scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch:1/(epoch+1))

2、不依赖epoch更新学习率:lr_scheduler.ReduceLROnPlateau()提供了基于训练中某些测量值使学习率动态下降的方法,它的参数说明到处都可以查到。
提醒一点就是参数 mode='min' 还是'max',取决于优化的的损失还是准确率,即使用 scheduler.step(loss)还是scheduler.step(acc)

8、冻结某些层的参数

参考:
https://www.zhihu.com/question/311095447/answer/589307812

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。我们需要先知道每一层的名字,通过如下代码打印:

net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():print('name: {0},\t grad: {1}'.format(name, value.requires_grad))

假设前几层信息如下:

name: cnn.VGG_16.convolution1_1.weight,  grad: True
name: cnn.VGG_16.convolution1_1.bias,  grad: True
name: cnn.VGG_16.convolution1_2.weight,  grad: True
name: cnn.VGG_16.convolution1_2.bias,  grad: True
name: cnn.VGG_16.convolution2_1.weight,  grad: True
name: cnn.VGG_16.convolution2_1.bias,  grad: True
name: cnn.VGG_16.convolution2_2.weight,  grad: True
name: cnn.VGG_16.convolution2_2.bias,  grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = ['cnn.VGG_16.convolution1_1.weight','cnn.VGG_16.convolution1_1.bias','cnn.VGG_16.convolution1_2.weight','cnn.VGG_16.convolution1_2.bias'
]

冻结方法如下:

net = Net.CTPN()  # 获取网络结构
for name, value in net.named_parameters():if name in no_grad:value.requires_grad = Falseelse:value.requires_grad = True

冻结后我们再打印每层的信息:

name: cnn.VGG_16.convolution1_1.weight,  grad: False
name: cnn.VGG_16.convolution1_1.bias,  grad: False
name: cnn.VGG_16.convolution1_2.weight,  grad: False
name: cnn.VGG_16.convolution1_2.bias,  grad: False
name: cnn.VGG_16.convolution2_1.weight,  grad: True
name: cnn.VGG_16.convolution2_1.bias,  grad: True
name: cnn.VGG_16.convolution2_2.weight,  grad: True
name: cnn.VGG_16.convolution2_2.bias,  grad: True

可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

9、对不同层使用不同学习率

我们对模型的不同层使用不同的学习率。还是使用这个模型作为例子:

net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():print('name: {}'.format(name))# 输出:
# name: cnn.VGG_16.convolution1_1.weight
# name: cnn.VGG_16.convolution1_1.bias
# name: cnn.VGG_16.convolution1_2.weight
# name: cnn.VGG_16.convolution1_2.bias
# name: cnn.VGG_16.convolution2_1.weight
# name: cnn.VGG_16.convolution2_1.bias
# name: cnn.VGG_16.convolution2_2.weight
# name: cnn.VGG_16.convolution2_2.bias

对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:

conv1_params = []
conv2_params = []for name, parms in net.named_parameters():if "convolution1" in name:conv1_params += [parms]else:conv2_params += [parms]# 然后在优化器中进行如下操作:
optimizer = optim.Adam([{"params": conv1_params, 'lr': 0.01},{"params": conv2_params, 'lr': 0.001},],weight_decay=1e-3,
)

我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。

10、模型相关操作

这个内容比较多,我写成了一篇文章:
https://zhuanlan.zhihu.com/p/73893187

11、Pytorch内置one_hot函数

感谢@yangyangyang 补充:Pytorch 1.1后,one_hot可以直接用torch.nn.functional.one_hot。然后我将Pytorch升级到1.2版本,试用了下 one_hot 函数,确实很方便。具体用法如下:

import torch.nn.functional as F
import torchtensor =  torch.arange(0, 5) % 3  # tensor([0, 1, 2, 0, 1])
one_hot = F.one_hot(tensor)# 输出:
# tensor([[1, 0, 0],
#         [0, 1, 0],
#         [0, 0, 1],
#         [1, 0, 0],
#         [0, 1, 0]])

F.one_hot会自己检测不同类别个数,生成对应独热编码。我们也可以自己指定类别数:

tensor =  torch.arange(0, 5) % 3  # tensor([0, 1, 2, 0, 1])
one_hot = F.one_hot(tensor, num_classes=5)# 输出:
# tensor([[1, 0, 0, 0, 0],
#         [0, 1, 0, 0, 0],
#         [0, 0, 1, 0, 0],
#         [1, 0, 0, 0, 0],
#         [0, 1, 0, 0, 0]])

升级 Pytorch (cpu版本)的命令:conda install pytorch torchvision \-c pytorch(希望Pytorch升级不会影响项目代码)

12、网络参数初始化

神经网络的初始化是训练流程的重要基础环节,会对模型的性能、收敛性、收敛速度等产生重要的影响。

以下介绍两种常用的初始化操作。

(1) 使用pytorch内置的torch.nn.init方法。常用的初始化操作,例如正态分布、均匀分布、xavier初始化、kaiming初始化等都已经实现,可以直接使用。具体详见PyTorch 中 torch.nn.init 中文文档。

init.xavier_uniform(net1[0].weight)

(2) 对于一些更加灵活的初始化方法,可以借助numpy。对于自定义的初始化方法,有时tensor的功能不如numpy强大灵活,故可以借助numpy实现初始化方法,再转换到tensor上使用。

for layer in net1.modules():if isinstance(layer, nn.Linear): # 判断是否是线性层param_shape = layer.weight.shapelayer.weight.data = torch.from_numpy(np.random.normal(0, 0.5, size=param_shape)) # 定义为均值为 0,方差为 0.5 的正态分布

13、加载内置预训练模型

torchvision.models模块的子模块中包含以下模型:

  • AlexNet

  • VGG

  • ResNet

  • SqueezeNet

  • DenseNet

导入这些模型的方法为:

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()

有一个很重要的参数为pretrained,默认为False,表示只导入模型的结构,其中的权重是随机初始化的。如果pretrainedTrue,表示导入的是在ImageNet数据集上预训练的模型。

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
vgg16 = models.vgg16(pretrained=True)

更多的模型可以查看:
https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/


文末福利
后台回复关键词【入群
加入卖萌屋NLP/IR/Rec与求职讨论群
有顶会审稿人、大厂研究员、知乎大V和妹纸
等你来撩哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479982.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文浅尝 | 利用推理链进行视觉问题回答

论文笔记整理:吴杨,浙江大学计算机学院,知识图谱、NLP方向。http://papers.nips.cc/paper/7311-chain-of-reasoning-for-visual-question-answering.pdf动机在视觉问题回答中,较为复杂的问题经常需要多步骤的推理才能够回答&#…

阿里P8架构师谈:数据库、JVM、缓存、SQL等性能调优方法和原则

编辑 性能优化基本是BAT等一线互联网公司程序员必备的技能,以下为大家完整揭晓性能完整的优化方案和方法:包含web网站调优、数据库、JVM调优、架构调优等方案。 第一:Web网站调优 1、尽可能减少HTTP请求:图片合并 (cs…

知乎招聘搜索算法实习生!邀你共建知乎搜索引擎!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术部门介绍搜索算法团队是知乎核心算法团队之一,负责知乎搜索框背后的各项算法工作。我们团队一直非常重视新技术在搜索场景的探索和落地,包括但不限于 NLP,排序,…

论文浅尝 | 主题感知的问答生成

Citation: XingC, Wu W, Wu Y, et al. Topic aware neural response generation[C]//Thirty-FirstAAAI Conference on Artificial Intelligence. 2017.动机人机对话在 AI 和 NLP 领域是一项具有挑战性的工作。现存的对话系统包括任务导向的对话系统和非任务导向的聊天机器人。在…

.halo勒索病毒解密方法|勒索病毒解决|勒索病毒恢复|数据库修复

尊敬的读者: 网络安全是当今数字时代的一大挑战,各种勒索病毒如.halo病毒层出不穷,对用户和企业的数据安全构成了严重威胁。本文将介绍.halo勒索病毒,以及如何恢复被其加密的数据文件,同时提供预防措施。在面对被勒索…

阿里P8架构师谈:多线程、架构、异步消息、Redis等性能优化策略

常见性能优化策略分类 1.代码 之所以把代码放到第一位,是因为这一点最容易引起技术人员的忽视。很多技术人员拿到一个性能优化的需求以后,言必称缓存、异步、JVM等。实际上,第一步就应该是分析相关的代码,找出相应的瓶颈&#xf…

周志华教授专著《集成学习:基础与算法》上市,豆瓣满分森林书破解AI实践难题...

近年来,机器学习技术的快速发展推动了语音、自然语言处理、机器视觉等多个领域获得巨大进步,也带动了人工智能相关产业的蓬勃发展。回顾机器学习最近30 年的发展历程,各种学习方法推陈出新、不断演进。但是,在此历程中&#xff0c…

Redis常用数据类型的数据结构

文章目录1. Redis 数据库介绍2. 列表(list)3. 字典(hash)4. 集合(set)5. 有序集合(sortedset)6. 数据结构持久化7. 总结1. Redis 数据库介绍 Redis 是一种键值( Key-Val…

论文浅尝 | 使用循环神经网络的联合事件抽取

余博涛,南京大学计算机科学与技术系,硕士研究生论文连接:http://www.aclweb.org/anthology/N16-1034发表会议:NAACL-HLT 2016摘要事件抽取(event extraction)是信息抽取中一个特别具有挑战性的问题。针对该…

阿里P8架构师谈:Web前端、应用服务器、数据库SQL等性能优化总结

web前端性能优化 Web前端指网站业务逻辑之前的部分,包括: 1.浏览器加载 2.网站视图模型 3.图片服务 4.CDN服务等 主要优化手段有优化浏览器访问,使用反向代理,CDN等。 1.浏览器访问优化 (1)减少http…

动手做个DialoGPT:生成式多轮对话模型

文 | 苏剑林编 | 兔子酱前段时间刷Arixv的时候,发现清华大学开源了一个大规模的中文闲聊语料库LCCC,从开源的文件上来看,这可能是目前开源的数量最大、质量最好的闲聊语料库了,而且还包含了部分多轮对话聊天,总的来说可…

搜索引擎背后的数据结构和算法

文章目录1. 整体系统介绍2. 搜集2.1 待爬取网页链接文件:links.bin2.2 网页判重文件:bloom_filter.bin2.3 原始网页存储文件:doc_raw.bin2.4 网页链接及其编号的对应文件:doc_id.bin3. 分析3.1 抽取网页文本信息3.2 分词并创建临时…

论文浅尝 | DKN: 面向新闻推荐的深度知识感知网络

笔记整理:仲亮靓,东南大学硕士研究生,研究方向是基于知识图谱的推荐系统动机新闻文本的语言非常凝练,其中包含了很多实体和常识知识。但目前的新闻个性化推荐方法都没有利用这些外部知识,也没有使用新闻之间潜在的知识…

聊聊工业界做机器学习的里程碑

文 | 吴海波编 | YY阅读说明,本文的机器学习领域限制于互联网搜索、推荐、广告场景,仅限于个人观点。2017年,我和团队的几个核心去了趟北京,找了各大互联网公司一线实战的同学,交流各自在机器学习上的经验。这次交流让…

直通BAT JVM必考题:Minor GC、Major GC、Full GC的区别

Java面试过程,JVM属于必考题系列: 直通BAT必考题系列:深入详解JVM内存模型与JVM参数详细配置 直通BAT必考题系列:JVM的4种垃圾回收算法、垃圾回收机制与总结 直通BAT必考题系列:7种JVM垃圾收集器特点,优…

matplotlib绘制多张图、多子图、多例图

绘制多图 关键: fig plt.figure(1) 表示新建第几个图 import matplotlib.pyplot as pltfig plt.figure(1) plt_rec_loss [1,2,3,4,5,6] plt_rec_recall [4,3,6,5,8,9] plt.xlabel("epoch") plt.ylabel("loss") plt.plot(range(len(plt_re…

jieba分词并做分析

Github:结巴分词地址 https://github.com/fxsjy/jieba 几种分词方法的简单使用:一 . jieba安装、示例 pip install jieba,jieba分词的语料是基于人民日报。分词示例1 import jieba 2 3 str1 江州市长江大桥 4 word_object jieba.cut(s…

研讨会 | CCF TF 第 17 期:认知计算产业化落地

CCF TF 技术前线只为技术专家CCFTF第17期主题 认知计算产业化落地2019年05月11日上海斯波特酒店五楼(上海市南丹路15号,徐汇区政府对面)人类迈入人工智能时代,技术的发展使得机器可以从大数据中提取信息,串联成知识&a…

短网址系统

文章目录1. 短网址服务整体介绍2. 如何通过哈希算法生成短网址?2.1 如何让短网址更短2.2 如何解决哈希冲突?2.3 如何优化哈希算法生成短网址的性能?3. 如何通过ID生成器生成短网址?3.1 相同的原始网址可能会对应不同的短网址3.2 如…

一个神经元的价值和一个神经病的坚持

作者 | 周博磊来源 | 机器之心一个神经元能够催生多少故事?香港中文大学信息工程系助理教授周博磊近日撰文介绍了他自 2015 年开始至今对神经元的研究经历。最近,他与 David Bau、朱俊彦等人合作的神经元研究论文发表在了 PNAS 杂志上。以下是周博磊的原…