class Network(object):def __init__(self, num_of_weights):# 随机产生w的初始值# 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子np.random.seed(0)self.w = np.random.randn(num_of_weights, 1)self.b = 0.def forward(self, x):z = np.dot(x, self.w) + self.breturn zdef loss(self, z, y):error = z - ynum_samples = error.shape[0]cost = error * errorcost = np.sum(cost) / num_samplesreturn costdef gradient(self, x, y):z = self.forward(x)gradient_w = (z-y)*xgradient_w = np.mean(gradient_w, axis=0)gradient_w = gradient_w[:, np.newaxis]gradient_b = (z - y)gradient_b = np.mean(gradient_b)return gradient_w, gradient_b
# 调用上面定义的gradient函数,计算梯度
# 初始化网络
net = Network(13)
# 设置[w5, w9] = [-100., -100.]
net.w[5] = -100.0
net.w[9] = -100.0z = net.forward(x)
loss = net.loss(z, y)
gradient_w, gradient_b = net.gradient(x, y)
gradient_w5 = gradient_w[5][0]
gradient_w9 = gradient_w[9][0]
print('point {}, loss {}'.format([net.w[5][0], net.w[9][0]], loss))
print('gradient {}'.format([gradient_w5, gradient_w9]))
point [-100.0, -100.0], loss 686.3005008179159
gradient [-0.850073323995813, -6.138412364807849]运行上面的代码,可以发现沿着梯度反方向走一小步,下一个点的损失函数的确减少了。感兴趣的话,大家可以尝试不停的点击上面的代码块,观察损失函数是否一直在变小。在上述代码中,每次更新参数使用的语句: net.w[5] = net.w[5] - eta * gradient_w5相减:参数需要向梯度的反方向移动。
eta:控制每次参数值沿着梯度反方向变动的大小,即每次移动的步长,又称为学习率。
大家可以思考下,为什么之前我们要做输入特征的归一化,保持尺度一致?这是为了让统一的步长更加合适。如 图8 所示,特征输入归一化后,不同参数输出的Loss是一个比较规整的曲线,学习率可以设置成统一的值 ;特征输入未归一化时,不同特征对应的参数所需的步长不一致,尺度较大的参数需要大步长,尺寸较小的参数需要小步长,导致无法设置统一的学习率。
图8:未归一化的特征,会导致不同特征维度的理想步长不同