消息摘要算法HmacMD5的实现

MAC算法主要用于消息验证


以下为算法实现:

import javax.crypto.KeyGenerator;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.xml.bind.annotation.adapters.HexBinaryAdapter;public class Main {static String src = "Hello,sahadev!";public static void main(String[] args) {HmacMD5();}public static void HmacMD5() {try {// 获取密钥生成器KeyGenerator keyGenerator = KeyGenerator.getInstance("HmacMD5");// 生成密钥SecretKey generateKey = keyGenerator.generateKey();// 获取"Message Authentication Code" (MAC) algorithm实例Mac instance = Mac.getInstance(generateKey.getAlgorithm());// 根据生产的密钥初始化该实例instance.init(generateKey);// 加密消息byte[] doFinal = instance.doFinal(src.getBytes());// 输出加密后的消息System.out.println("HmacMD5 : "+ new HexBinaryAdapter().marshal(doFinal));} catch (Exception e) {e.printStackTrace();}}}


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ltp︱基于ltp的无监督信息抽取模块

ltp︱基于ltp的无监督信息抽取模块:https://zhuanlan.zhihu.com/p/44890664 无监督信息抽取较多都是使用哈工大的ltp作为底层框架。那么基于ltp其实有了非常多的小伙伴进行了尝试,笔者私自将其归纳为:事件抽取(三元组…

Eureka 简介和使用

Eureka 服务注册与发现服务注册与发现Eureka与Zookeeper的比较ZooKeeper保证CPEureka保证APEureka是什么?Eureka原理SpringBoot、Spring Cloud 和 Eureka 版本选择Eureka单机搭建搭建Eureka服务端搭建Eureka客户端的服务提供者搭建Eureka客户端的服务消费者Eureka集…

论文浅尝 | XQA:一个跨语言开放域问答数据集

论文笔记整理:刘晓臻,东南大学计算机科学与工程学院本科生。Citation: Liu, J., Lin, Y., Liu, Z., & Sun, M. (2019,July). XQA: A Cross-lingual Open-domain Question Answering Dataset. InProceedings of the 57th Conference of the Associati…

以DES的方式实现对称加密,并提供密钥

注释都在代码里了,干了: import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax.crypto.SecretKey; import javax.crypto.spec.SecretKeySpec; import javax.xml.bind.annotation.adapters.HexBinaryAdapter;import org.apache.c…

深度CTR预估模型中的特征自动组合机制演化简史

文 | 杨旭东源 | 知乎众所周知,深度学习在计算机视觉、语音识别、自然语言处理等领域最先取得突破并成为主流方法。但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像、语音、文本数据在空间和时间上具有一定的…

LeetCode 94. 二叉树的中序遍历(中序遍历)

文章目录1. 题目信息2. 解题2.1 递归2.2 循环,必须掌握1. 题目信息 给定一个二叉树,返回它的中序 遍历。 示例:输入: [1,null,2,3]1\2/3输出: [1,3,2]进阶: 递归算法很简单,你可以通过迭代算法完成吗? 来源:力扣&am…

想进美团不知道选哪个技术岗位?这里有一份通关秘籍!

春暖花开,美团春招已经启动,针对校招和社招开放了几千个职位,其中很大部分都是技术岗位。 随着互联网的高速发展,技术岗位在不断地细分,比如软件开发不仅分为前端和后端,前端会分为Web、iOS和Android三个方…

哈工大LTP本地安装及python调用

原文链接:https://blog.csdn.net/yangfengling1023/article/details/84559848 LTP即哈工大语言技术平台云,是基于云计算技术的中文自然语言处理服务平台 在线使用的网址:https://www.ltp-cloud.com/ github网址:https://github.c…

Nginx 简介和使用

Nginx简介Nginx发展介绍Nginx作者正向代理和反向代理概念网站代理服务器查看Nginx环境搭建下载安装前准备安装启动检测Nginx是否启动关闭重启Nginx核心配置文件说明Nginx主要功能1、静态网站部署2、负载均衡负载均衡概述负载均衡实现方式Nginx负载均衡策略负载均衡其他配置3、静…

论文浅尝 | 将文本建模为关系图,用于联合实体和关系提取

论文笔记整理:余海阳,浙江大学硕士,研究方向为知识图谱、自然语言处理。链接:https://www.aclweb.org/anthology/P19-1136动机本文提出了一种利用图卷积网络(GCNs)联合学习命名实体和关系抽取的端到端抽取模…

LeetCode 144. 二叉树的前序遍历(前序遍历)

文章目录1. 题目信息2. 解题2.1 递归2.2 循环,必须掌握1. 题目信息 给定一个二叉树,返回它的 前序 遍历。 示例:输入: [1,null,2,3] 1\2/3 输出: [1,2,3]进阶: 递归算法很简单,你可以通过迭代算法完成吗? 来源:力扣…

设计模式在外卖营销业务中的实践

一、前言 随着美团外卖业务的不断迭代与发展,外卖用户数量也在高速地增长。在这个过程中,外卖营销发挥了“中流砥柱”的作用,因为用户的快速增长离不开高效的营销策略。而由于市场环境和业务环境的多变,营销策略往往是复杂多变的&…

RabbitMQ 简介和使用

RabbitMQ一、RabbitMQ概述1、什么是消息队列2、为什么要使用消息队列3、RabbitMQ特点二、RabbitMQ安装1、安装前准备1.1 依赖包安装1.2 安装Erlang2、安装3、常用命令3.1. 启动和关闭3.2. 插件管理3.3. 用户管理3.4. 权限管理3.5. vhost管理三、RabbitMQ消息发送和接收1、 Rabb…

依存句法分析

1 依存句法比较出名的项目地址: https://cloud.tencent.com/developer/article/1419995 2 初学者|一文掌握HanLP用法: https://cloud.tencent.com/developer/article/1437816 3 《自然语言处理入门》12.依存句法分析–提取用户评论https://www.cnblogs…

Transformer哪家强?Google爸爸辨优良!

文:Zilong2017年Attention is all you need横空出世,Transformer横扫机器翻译,隔年诞生的BERT建立在层层堆叠的Transformer之上,凭借这个平平无奇的Attention点乘模型一举刷新了各种沉积许久的榜单,一夜间仿佛不懂Tran…

CCKS 2019 | 百度 CTO 王海峰详解知识图谱与语义理解

本文转载自公众号:机器之心。; 8 月 24 日至 27 日在杭州召开的 2019 年全国知识图谱与语义计算大会(CCKS 2019)上,百度 CTO 王海峰发表了题为《知识图谱与语义理解》的演讲。CCKS 2019 由中国中文信息学会语言与知识计…

LeetCode 145. 二叉树的后序遍历(后序遍历总结)

文章目录1. 题目信息2. 解法2.1 递归2.2 循环,必须掌握a. 单栈b. 双栈解法3. 前中后序总结1. 题目信息 给定一个二叉树,返回它的 后序 遍历。 示例:输入: [1,null,2,3] 1\2/3 输出: [3,2,1]进阶: 递归算法很简单,你可以通过迭代算法完成吗…

云原生之容器安全实践

概述 云原生(Cloud Native)是一套技术体系和方法论,它由2个词组成,云(Cloud)和原生(Native)。云(Cloud)表示应用程序位于云中,而不是传统的数据中…

领域应用 | HiTA知识图谱 “药品-适应证”图谱数据发布!

本文转载自公众号:OMAHA联盟。2019年8月,OMAHA对HiTA知识图谱服务平台(kg.omaha.org.cn)进行了更新,同步发布了医学知识图谱表达模型(schema)。2019年9月17日,首次发布了由OMAHA研发…

主题模型综述:短文本、细粒度、加入先验知识、作者写作偏好、主题内涵随时间的变迁、融入词嵌入特性、语言模型加持

原文链接:https://www.zhihu.com/question/34801598/answer/765580727 主题模型当然有用咯,谁用谁知道!这次我来展示下它的7个“变种”(短文本、细粒度、加入先验知识、作者写作偏好、主题内涵随时间的变迁、融入词嵌入特性、语言模型加持)&a…