论文浅尝 | 利用知识-意识阅读器改进的不完整知识图谱问答方法

论文笔记整理:谭亦鸣,东南大学博士生,研究方向为知识库问答。


640?wx_fmt=png

来源:ACL2019

链接:https://www.aclweb.org/anthology/P19-1417/

 

      本文提出了一种融合不完整知识图谱与文档集信息的end2end问答模型,旨在利用结构化的实体,边缘信息(来自问题对应的知识子图)帮助理解非结构化的文档信息(来自检索),从而获得融合的问答证据,用于答案的预测。在WebQSP数据集上的实验表明,本文模型对于完整度不同知识图谱均能在问答性能上带来提升。

640?wx_fmt=png

     作者用上面这个例子阐述不完整知识图谱问答任务的必要性。从图 1 中的真实示例可以看到,现有的知识图谱并不能覆盖完全的知识信息。因此对于部分问答场景,同时使用到图谱和文本是获取到更精准答案的策略之一。

 

方法

640?wx_fmt=png

       图 2 描述了本文提出的模型框架,主要由一个SubGraph Reader模型(提取知识图谱信息)及一个Knowledge-Aware TextReader(提取文本信息)模型组成。

其中,原始问题经由SubGraph Reader整合得到与问题最为相关的实体/关系将用于重构问题信息(query information),并输入到Knowledge-Aware TextReader帮助从文本中预测问题的答案。

框架细节描述如下:

SubGraphReader

该模型的设计思路在于利用图-注意力机制(Graph-Attention)收集关联实体e的邻居Ne知识。图-注意力主要考虑两个方面:

  1. 邻居关系是否与问题相关;

  2. 邻居实体是否是问题的主题实体;

模型的输出各实体的向量化表示,并利用实体的关联邻居编码知识。

因此这里需要解决的两个子问题分别为:

1.    问题-关系匹配

这里利用了一个共享的LSTM编码问题序列{w1q, w2q…, wnq}及tokenized形式的关系词{ w1r, w2r…, wmr},从而得到两者对应的隐状态hq与hr。在此基础上,使用一个注意力机制对关系进行编码,形式如下:

640?wx_fmt=png

考虑到一个问题可能匹配多个关系,且一个关系可能只匹配问题的一部分,因此作者在这里提出使用关系去逐个匹配问题中每个词,而后融合得到整体的匹配分数,形式如下:

640?wx_fmt=png

2.    对于主题实体邻居的特别关注

在上述问题-关系匹配的基础上,作者发现由主题实体衍生的另一个特征也非常有用,即当主题实体的邻居在问题中出现,那么其在知识图谱中对应的三元组相对于不包含主题实体的其他三元组应该与问题具备更高的相关性。

邻居(ri, ei)其注意力得分的计算形式为:

640?wx_fmt=png

3.    邻居的信息传播

为了聚合图谱中关联三元组的知识,作者对于每个实体定义了其传播规则如下:

640?wx_fmt=png

其中,e为预先计算的图谱embedding,W是一个可训练的矩阵,640?wx_fmt=png是一个激活函数,640?wx_fmt=png是一个协调参数,由一个线性门函数(linear gate function)计算得到,用于控制原始实体信息的保留程度,形式如下:

640?wx_fmt=png

 

Knowledge-AwareText Reader

        作者表示这个部分主要是基于现有的阅读理解模型(Chen et al. Reading wikipedia to answer opendomain questions, ACL 2017),改进部分在于对问题和文本均学习了更多的知识-意识表示。主要包括:

1.    潜在空间的查询重制

首先使用self-attention编码器编码原始问题向量hq,得到一个独立的问题表示:

640?wx_fmt=png

作者收集问题的主题实体知识描述为:

640?wx_fmt=png

接着,利用一个门机制将两者聚合如下:

640?wx_fmt=png

2.    知识-意识文本强化

对于文本,作者首先使用了一个双向LSTM获取token-level的特征,利用文本中的实体链接注释,以类似查询重制的方式将实体知识融合到上述特征中,不过这里作者采用了一个新的条件门函数用以明确问题的条件,这一方式帮助reader动态选择与问题更加相关的输入。

函数描述如下:

640?wx_fmt=png

其中,640?wx_fmt=png表示文本的token,640?wx_fmt=png表示其对应的token特征,640?wx_fmt=png则为其对应的链接实体。640?wx_fmt=png则是来自SubGraph Reader的实体embedding

3.    文本阅读中的实体信息聚合

最后,将知识扩充后的信息作为BiLSTM的输入,并且使用输出的token-level隐状态计算注意力得分,形如:

而后,获得每个文档的表示,形如:

640?wx_fmt=png

对于确定的实体e及包含该实体的文本De,通过以下方式简单的将信息聚合并平均:

640?wx_fmt=png

        最后,利用获取的各实体表示(来自知识库和文本),通过匹配问题向量和实体实现答案的预测:

实验

数据集

            实验使用的数据集来自WebQSP数据集,为了模拟真实场景的,作者也使用了(Sun et al. Open domain question answering using early fusion of knowledge bases and text)的数据集进行测试。

            Baseline方面使用Key-Value Memory Network作为参照,分别测试了基于图谱和图谱+文本的两个版本,以及GraftNet的多个版本(GN-KB, GN-LF, GN-EF)

 

实验结果

            相关实验结果罗列如下

640?wx_fmt=png

            此外,作者分析了在30%完整性的图谱场景下,各个子模块产生的效果

640?wx_fmt=png

            以及一些人工分析结果:

640?wx_fmt=png

 


OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479488.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MVP模式在Android中的应用(附UML高清大图,使用RecyclerView举例)

传了一张图,图比较大,请移步下载:http://download.csdn.net/detail/u011064099/9266245 在看代码之前,首先简单看一下什么是MVP模式:http://www.cnblogs.com/end/archive/2011/06/02/2068512.html MVP最核心就是将界面…

Facebook大公开:解决NLG模型落地难题!工业界的新一波春天?

文 | 小喂老师编 | 小轶作为NLP领域的“三高”用户(高产、高能、高钞),FaceBook最近(2020年11月)又发表了一篇高水准文章,目前已被COLING-2020接收,号称解决了自然语言生成(NLG&…

论文浅尝 | 如何利用外部知识提高预训练模型在阅读理解任务中的性能

论文笔记整理:吴桐桐,东南大学博士生,研究方向为自然语言处理。链接:https://www.aclweb.org/anthology/P19-1226/近年来,机器阅读理解已经逐渐发展为自然语言理解方向的主流任务之一。最近,预训练模型尤其…

美团外卖前端容器化演进实践

背景 提单页的位置 提单页是美团外卖交易链路中非常关键的一个页面。外卖下单的所有入口,包括首页商家列表、订单列表页再来一单、二级频道页的今日推荐等,最终都会进入提单页,在确认各项信息之后,点击提交订单按钮,完…

LeetCode 807. 保持城市天际线

文章目录1. 题目2. 解题1. 题目 在二维数组grid中,grid[i][j]代表位于某处的建筑物的高度。 我们被允许增加任何数量(不同建筑物的数量可能不同)的建筑物的高度。 高度 0 也被认为是建筑物。 最后,从新数组的所有四个方向&#…

提供一个Android原生的Progress——SwipeToRefreshLayout下拉刷新时的等待动画

先来上个图看看效果: 这里我为什么要单独把这个拿出来呢,因为最近才开始接触Android最新的东西,也就是5.0以上的东西,发现Android提供的SwipeToRefreshLayout是没有上拉加载更多的,在网上找了不少第三方提供加载更多的…

导师实验室对学生影响有多大?

读博士导师非常重要,比你们想象得还要更重要。一个优秀的导师不仅在科研帮上很多忙,而且让你懂得怎么做科研,更重要的他教会你怎么做一个合格的学者。 跟这种导师工作,你会发现科研其实是一件非常有趣的事情,它带来的乐…

论文浅尝 | 使用孪生BERT网络生成句子的嵌入表示

论文笔记整理:吴杨,浙江大学计算机学院,知识图谱、NLP方向。https://www.ctolib.com/https://arxiv.org/abs/1908.10084动机谷歌的 BERT 预训练模型,已经能够在两个句子的语义相似度匹配等需要输入一对句子的任务上取得了非常好的…

美团点评效果广告实验配置平台的设计与实现

一. 背景 效果广告的主要特点之一是可量化,即广告系统的所有业务指标都是可以计算并通过数字进行展示的。因此,可以通过业务指标来表示广告系统的迭代效果。那如何在全量上线前确认迭代的结果呢?通用的方法是采用AB实验(如图1&…

LeetCode 832. 翻转图像(异或^)

文章目录1. 题目2. 解题1. 题目 给定一个二进制矩阵 A,我们想先水平翻转图像,然后反转图像并返回结果。 水平翻转图片就是将图片的每一行都进行翻转,即逆序。例如,水平翻转 [1, 1, 0] 的结果是 [0, 1, 1]。 反转图片的意思是图…

MVP模式在Android中的应用之图片展示选择功能的框架设计

前言:虽然安卓出现的时间比其它平台软件比较晚,但是在我们的安卓开发中,一样可以使用我们所熟知的设计模式来给它一个合理、完善的结构,这样,才可以使我们在平常开发的时候减少冗余代码的发生,真正的提高效…

抑制过拟合之正则化与Dropout

避免过拟合: 1、增大数据集合 – 使用更多的数据,噪声点比减少(减少数据扰动所造成的影响) 2、减少数据特征 – 减少数据维度,高维空间密度小(减少模型复杂度) 3、正则化 / dropout / 数据增强…

谈谈神经网络的大规模训练优化

文 | 立交桥跳水冠军源 | 知乎大规模神经网络训练一般会涉及到几百个分布式节点同时工作,模型的参数量以及运算量往往很大,作者认为在这个task下当前的工作主要归结为以下三种:对通信本身的优化,神经网络训练通信的优化&#xff0…

LeetCode 1108. IP 地址无效化

文章目录1. 题目2. 解题1. 题目 给你一个有效的 IPv4 地址 address,返回这个 IP 地址的无效化版本。 所谓无效化 IP 地址,其实就是用 “[.]” 代替了每个 “.”。 示例 1:输入:address "1.1.1.1" 输出:&…

Android NDK开发入门学习笔记(图文教程,极其详尽)

以前也简单用过JNI,但是只是简单用一下,好多都不明白。最近在看源码部分,有涉及到JNI调用的,所以这次打算彻底把它搞定。 先普及一下JNI的调用关系:JAVA------------------------>JNI----------------------------…

论文浅尝 | 利用问题生成提升知识图谱问答

论文笔记整理:谭亦鸣,东南大学博士生,研究方向为知识库问答。来源:NLPCC2019链接:http://tcci.ccf.org.cn/conference/2019/papers/183.pdf本文提出了一种利用问题生成提升知识图谱问答模型性能的方法(一个…

顶会论文:基于神经网络StarNet的行人轨迹交互预测算法

1.背景 民以食为天,如何提升超大规模配送网络的整体配送效率,改善数亿消费者在”吃“方面的体验,是一项极具挑战的技术难题。面向未来,美团正在积极研发无人配送机器人,建立无人配送开放平台,与产学研各方共…

python操作mysql数据库实现增删改查

python操作mysql数据库实现增删改查 Python 标准数据库接口为 Python DB-API,Python DB-API为开发人员提供了数据库应用编程接口。 Python 数据库接口支持非常多的数据库,你可以选择适合你项目的数据库: GadFlymSQLMySQLPostgreSQLMicrosoft …

LeetCode 654. 最大二叉树(递归)

文章目录1. 题目2. 解题1. 题目 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下: 二叉树的根是数组中的最大元素。 左子树是通过数组中最大值左边部分构造出的最大二叉树。 右子树是通过数组中最大值右边部分构造出的最大二叉树。 通过给…

Probe:Android线上OOM问题定位组件

配送骑手端App是骑手用于完成配送履约的应用,帮助骑手完成接单、到店、取货及送达,提供各种不同的运力服务,也是整个外卖闭环中的重要节点。由于配送业务的特性,骑手App对于应用稳定性的要求非常高,体现App稳定性的一个…