ChatGLM2-6B、ChatGLM-6B 模型介绍及训练自己数据集实战

介绍

ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,结合模型蒸馏技术,实测在2080ti显卡训练中上(INT4)显存占用6G左右,

优点:1.较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上。
2,更长的序列长度: 相比 GLM-10B(序列长度1024),ChatGLM2-6B 序列长度达32K,支持更长对话和应用。
3,人类意图对齐训练: 使用了监督微调(Supervised Fine-Tuning)、反馈自助(Feedback Bootstrap)、人类反馈强化学习(Reinforcement Learning from Human Feedback) 等方式,使模型初具理解人类指令意图的能力。输出格式为 markdown,方便展示。目前已开源监督微调方法,

不足:1,模型容量较小: 6B 的小容量,决定了其相对较弱的模型记忆和语言能力,随着自己训练数据数量和轮次增加,会逐步丧失原来的对话能力,智谱ai于魁飞博士给的训练数据再好在1000条左右。

2,较弱的多轮对话能力:ChatGLM-6B 的上下文理解能力还不够充分,在面对长答案生成,以及多轮对话的场景时,可能会出现上下文丢失和理解错误的情况。解决方式:外挂知识库的形式,例如ChatGLM-6B 结合 langchain 实现本地知识库link

3,训练完自己的数据后,遗忘掉之前对话的能力,出现灾难性遗忘,解决办法在自己专业领域数据上可以加入通用开源的对话微调数据集一起训练,

制作不易,收藏关注哈,一起交流…

1,安装

1.1,ChatGLM2-6B官方开源的训练方式基于P-Tuning v2微调,
链接: git_link
基于QLoRA
链接: git_link

1.2,ChatGLM-6B基于P-Tuning v2微调,
链接: git_link

两个版本区别,文章末尾介绍

以下ChatGLM2-6B微调步骤

下载ChatGLM2-6B

git clone https://github.com/THUDM/ChatGLM2-6B
cd ChatGLM2-6B
pip install -r requirements.txt 
cd ptuning/
pip install rouge_chinese nltk jieba datasets

2, 使用自己数据集

2.1 构建自己的数据集

样例数据下载链接
链接: Dataset
将自己的数据集换成以下格式

{"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳","summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}

解释:构建数据集是一个 JSON 格式文件,其中一个列表中包含多个字典
{ “content”: “问句1”,
“summary”: "答案1“}
{ “content”: “问句1”,
“summary”: "答案1“}
{…}
在这里插入图片描述

2.2 修改 train.sh 和 evaluate.sh

修改 train.sh 和 evaluate.sh 中的 train_file、validation_file和test_file为你自己的 JSON 格式数据集路径,并将 prompt_column 和 response_column 改为 JSON 文件中输入文本和输出文本对应的 KEY。

我修改的train.sh示例如下:
## 切记如果粘贴我的这个示例代码,请删除注释
PRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=2  # 双卡torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \--do_train \--train_file di/train.json \   # 训练文件地址--validation_file di/fval.json \   # 验证文件地址--prompt_column content \       # 训练集中prompt名称--response_column summary \      # 训练集中答案明细--overwrite_cache \              # 重复训练一个训练集时候可删除--model_name_or_path THUDM/chatglm-6b \  # 加载模型文件地址,可修改为本地路径,第五章讲怎么找--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \    # 保存训练模型文件地址--overwrite_output_dir \--max_source_length 64 \     # 最大输入文本的长度--max_target_length 128 \--per_device_train_batch_size 1 \    # batch_size 根据显存调节--per_device_eval_batch_size 1 \--gradient_accumulation_steps 16 \    --predict_with_generate \--max_steps 2000 \    # 最大保存模型的步数--logging_steps 10 \  # 打印日志间隔--save_steps 500 \    # 多少部保存一次模型--learning_rate $LR \--pre_seq_len $PRE_SEQ_LEN \--quantization_bit 4   # 可修改为int8
参数具体解释

train.sh 中的 PRE_SEQ_LEN 和 LR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。

P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来被原始模型的量化等级,不加此选项则为 FP16 精度加载。

在默认配置 quantization_bit=4、per_device_train_batch_size=1、gradient_accumulation_steps=16 下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size 的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。

2.3,开始训练

bash train.sh

示例:两个显卡分别占用8.3G显存在这里插入图片描述请添加图片描述

3,验证模型

将 evaluate.sh 中的 CHECKPOINT 更改为训练时保存的 checkpoint 名称,运行以下指令进行模型推理和评测:

bash evaluate.sh

4,模型部署

3.1 自己验证 ,更换模型路径
将对应的demo或代码中的THUDM/chatglm2-6b换成经过 P-Tuning 微调之后 checkpoint 的地址(在示例中为 ./output/adgen-chatglm-6b-pt-8-1e-2/checkpoint-3000)。注意,目前的微调还不支持多轮数据,所以只有对话第一轮的回复是经过微调的。

在 P-tuning v2 训练时模型只保存 PrefixEncoder 部分的参数,所以在推理时需要同时加载原 ChatGLM-6B 模型以及 PrefixEncoder 的权重,因此需要指定 evaluate.sh 中的参数:

首先载入Tokenizer:

from transformers import AutoConfig, AutoModel, AutoTokenizer
# 载入Tokenizertokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)

如果需要加载的 P-Tuning 的 checkpoint:

config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():if k.startswith("transformer.prefix_encoder."):new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)# Comment out the following line if you don't use quantization
model = model.quantize(4) #或者8
model = model.half().cuda()
model.transformer.prefix_encoder.float()
model = model.eval()response, history = model.chat(tokenizer, "你好", history=[])

你也可以直接运行支持加载 P-Tuning v2 checkpoint 的 web demo

bash web_demo.sh

可能需要修改 web_demo.sh 的内容以符合你实际的 checkpoint 情况。

5,预训练模型地址一般存放位置在本机

本章第二步执行bash train.sh,终端会打印出模型加载的位置,找到位置后替换
在这里插入图片描述
一般存放的位置是
.cache/huggingface/hub/models–THUDM–chatglm-6b/snapshots/aa51e62ddc9c9f334858b0af44cf59b05c70148a/
查看包含这些目录
config.json configuration_chatglm.py modeling_chatglm.py pytorch_model.bin quantization.py
替换掉 demo.py 文件中THUDM/chatglm-6b为自己路径

6 如需要使用多轮对话数据对模型进行微调,可以提供聊天历史,例如以下是一个三轮对话的训练数据:

{"prompt": "长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线", "response": "用电脑能读数据流吗?水温多少", "history": []}
{"prompt": "95", "response": "上下水管温差怎么样啊?空气是不是都排干净了呢?", "history": [["长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线", "用电脑能读数据流吗?水温多少"]]}
{"prompt": "是的。上下水管都好的", "response": "那就要检查线路了,一般风扇继电器是由电脑控制吸合的,如果电路存在断路,或者电脑坏了的话会出现继电器不吸合的情况!", "history": [["长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线", "用电脑能读数据流吗?水温多少"], ["95", "上下水管温差怎么样啊?空气是不是都排干净了呢?"]]}

训练时需要指定 --history_column 为数据中聊天历史的 key(在此例子中是 history),将自动把聊天历史拼接。要注意超过输入长度 max_source_length 的内容会被截断。

可以参考以下指令:

bash train_chat.sh

7,遇到的问题和解决办法

7.1,出现一个问题了。 RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
在这里插入图片描述

训练的时候
估计transforms版本,我也遇到了,我回退到transformers==4.27.1 就可以了

7.2 ,问题:ValueError: Unable to create tensor, you should probably activate truncation and/or padding with ‘padding=True’ ‘truncation=True’ to have batched tensors with the same length. Perhaps your features 。。
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 16858) of binary
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
在这里插入图片描述

解决方式
显存不够,调小batch_size显存就可以了

8,ChatGLM2-6B和ChatGLM-6B区别

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/47940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARM M33架构入门

概述 Arm Cortex-M33核心处理器专为需要高效安全或数字信号控制的物联网和嵌入式应用而设计。该处理器具有许多可选功能,包括数字信号处理扩展 (DSP)、用于硬件强制隔离的TrustZone 安全性、内存保护单元 (MPU)和浮点单元 (FPU)。 Cortex-M33 的性能比 Cortex-M…

I2S/PCM board-level 约束及同步(latencyskewbitsync)

I2S/PCM是典型的低速串口,在两个方向上分别有两组信号,我们已soc为视角分为soc-adif和外设audio-codec。 那么adif输入: sclk_i, ws_i, sdi 当然并不是三个输入信号同时有效,只有adif RX slave时,三个输入都会有效…

Python爬虫(十四)_BeautifulSoup4 解析器

CSS选择器:BeautifulSoup4 和lxml一样,Beautiful Soup也是一个HTML/XML的解析器,主要的功能也是如何解析和提取HTML/XML数据。 lxml只会局部遍历,而Beautiful Soup是基于HTML DOM的,会载入整个文档,解析整…

【高危】企业微信私有化2.5-2.6.93版本后台API未授权访问漏洞

漏洞描述 企业微信私有化2.5.x版本及2.6.930000版本以下后台中存在接口未授权访问漏洞,攻击者通过访问/cgi-bin/gateway/agentinfo接口可获得Secret,从而利用开放API获取企业通讯录等敏感信息及企业微信内应用权限。 漏洞名称企业微信私有化2.5-2.6.93…

基于GPT-4和LangChain构建云端定制化PDF知识库AI聊天机器人

参考: GitHub - mayooear/gpt4-pdf-chatbot-langchain: GPT4 & LangChain Chatbot for large PDF docs 1.摘要: 使用新的GPT-4 api为多个大型PDF文件构建chatGPT聊天机器人。 使用的技术栈包括LangChain, Pinecone, Typescript, Openai和Next.js…

【C语言】位段详解

前言 上一篇文章,我们学习了结构体的相关知识,今天我们来学习和结构体很像的位段 自定义类型:结构体 位段 位:指的是二进制位 位段的声明 位段与结构体的声明有两个不同: 1.位段的成员必须是 int、unsigned int 或…

【雷达】接收和去噪L波段雷达接收到的信号研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

Linux 多线程中执行fork的情况

一、普通多线程中执行fork的情况 1.多线程中没有执行fork的情况 代码如下&#xff1a; #include<stdio.h> #include<stdlib.h> #include<unistd.h> #include<pthread.h> #include<string.h> #include<semaphore.h>void*fun(void* arg) …

4.物联网LWIP之C/S编程,实现服务器大小写转换

LWIP配置 服务器端实现 客户端实现 错误分析 一。LWIP配置&#xff08;FREERTOS配置&#xff0c;ETH配置&#xff0c;LWIP配置&#xff09; 1.FREERTOS配置 为什么要修改定时源为Tim1&#xff1f;不用systick&#xff1f; 原因&#xff1a;HAL库与FREERTOS都需要使用systi…

信号处理--基于EEG脑电信号的眼睛状态的分析

本实验为生物信息学专题设计小项目。项目目的是通过提供的14导联EEG 脑电信号&#xff0c;实现对于人体睁眼和闭眼两个状态的数据分类分析。每个脑电信号的时长大约为117秒。 目录 加载相关的库函数 读取脑电信号数据并查看数据的属性 绘制脑电多通道连接矩阵 绘制两类数据…

Nacos

Nacos介绍 Nacos /nɑ:kəʊs/ 是 Dynamic Naming and Configuration Service的⾸字⺟简称&#xff0c;⼀个更易于构 建云原⽣应⽤的动态服务发现、配置管理和服务管理平台。 在这个介绍中&#xff0c;可以看出Nacos⾄少有三个核⼼功能&#xff1a; 1. 动态服务发现 2. 配…

神经网络为什么可以学习

本资料转载于B站up主&#xff1a;大模型成长之路,仅用于学习和讨论&#xff0c;如有侵权请联系 动画解析神经网络为什么可以学习_哔哩哔哩_bilibilis 1、一个神经网络是由很多神经元形成的 1.1 也可以是一层&#xff0c;也可以是多层 2 层和层之间的连接就跟一张网一样 2.1 每…

【ppt密码】为什么PPT幻灯片不能编辑?

PPT打开之后&#xff0c;发现幻灯片内不能编辑&#xff0c;出现这种情况的原因大概有两个。 原因一&#xff1a;幻灯片母版 当幻灯片中出现有些固定的对象无法修改、无法编辑的时候&#xff0c;很有可能就是因为在母版视图中进行了设置。我们只需要再打开幻灯片母版&#xff…

适用于Android™的Windows子系统Windows Subsystem fo r Android™Win11安装指南

文章目录 一、需求二、Windows Subsystem for Android™Win11简介三、安装教程1.查看BIOS是否开启虚拟化2.安装Hyper-V、虚拟机平台3.启动虚拟机管理程序(可选)4.安装适用于Android™的Windows子系统5.相关设置 一、需求 需要在电脑上进行网课APP&#xff08;无客户端只有App&…

Java入门级基础教学(史上最详细的整合)

目录 一&#xff1a;基础语法 1.“Hello word” 2.Java的运行机制 3. Java基本语法 1.注释、标识符、关键字 2.数据类型&#xff08;四类八种&#xff09; 4.类型转换 1.自动转换 2.强制转换 5.常量和变量 1.常量 2.变量 3.变量的作用域 6.运算符 1.算数运算符 …

2023/8/16 华为云OCR识别驾驶证、行驶证

目录 一、 注册华为云账号开通识别驾驶证、行驶证服务 二、编写配置文件 2.1、配置秘钥 2.2、 编写配置工具类 三、接口测试 3.1、测试接口 3.2、结果 四、实际工作中遇到的问题 4.1、前端传值问题 4.2、后端获取数据问题 4.3、使用openfeign调用接口报错 4.3、前端显示问题…

电力虚拟仿真 | 高压电气试验VR教学系统

在科技进步的推动下&#xff0c;我们的教育方式也在发生着翻天覆地的变化。其中&#xff0c;虚拟现实&#xff08;VR&#xff09;技术的出现&#xff0c;为我们提供了一种全新的、富有沉浸感的学习和培训方式。特别是在电力行业领域&#xff0c;例如&#xff0c;电力系统的维护…

ssm+vue绿色农产品推广应用网站源码和论文PPT

ssmvue绿色农产品推广应用网站041 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高…

第3步---MySQL的DDL和DML操作

第3步---MySQL的DDL和DML操作 1.DDL操作 Data Defination Language 数据定义语言。创建数据库和表的不涉及到数据的操作。 1.1DDL基本操作 1.1.1数据库相关操作 ddl&#xff1a;创建数据库&#xff0c;创建和修改表 对数据库常见的操作&#xff1a; 操作数据库 -- 展示数据…

PSP - 基于开源框架 OpenFold Multimer 蛋白质复合物的结构预测与BugFix

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132410296 AlphaFold2-Multimer 是一个基于 AlphaFold2 的神经网络模型&#xff0c;可以预测多链蛋白复合物的结构。该模型在训练和推理时都可以处…