神经网络为什么可以学习

本资料转载于B站up主:大模型成长之路,仅用于学习和讨论,如有侵权请联系

动画解析神经网络为什么可以学习_哔哩哔哩_bilibilis

 1、一个神经网络是由很多神经元形成的

1.1 也可以是一层,也可以是多层

2 层和层之间的连接就跟一张网一样

 2.1 每两个神经元之间有两个参数,我们称之为权重

3 在同一层神经元之间是没有链接的

3.1

4 每两个神经元之间有一些参数

4.1

5、神经网络的第一层称为输入层,主要获取输入信息

5.1

6、中间称为隐藏层,用于特征提取调整权重,让隐藏层的某种神经单元,对某种模式形成反应

6.1

7、最后一层 输出层,最终任务是输出最终结果

7.1

8 为了学习后面的模式,神经网络首先会定义一个损失函数

8.1

9 训练的过程就是将数据不断输入到模型里

9.1

10 利用梯度下降和方向传播的方法

10.1

11、不断优化模型的参数,上面反向传播,以便更好的优化背后的规律,使得损失函数的值越来越小,最终达到学习到背后规律的目的

11.1

12 最简单的神经元,只有一个输入X

12.1

13 一个参数W,经过神经元的输入之后,可以输出y

13.1

14、由一个神经元,一个输入,一个输出组成的,到底是一个什么样的模型

14.1

15 表示了一个很简单的关系y=w*x +b

15.1

16 这里w和b是需要训练学习的参数

16.1

17 举个例子,当W=0.6,b=e的时候

 17.1

18 学习神经网络如何学习输入和输出数据反应的模型

18.1

19 我们的训练数据都是一些点,这些点都位于一条直线上

19.1

20 我们采用的模型非常简单

20.1

##

21、我们采用的神经元网络模型非常简单,线性关系

21.1 

22 我们希望这个数据能够很好的拟合我们的网络数据

22.1

23 用π托迟来训练这个模型

23.1

24 损失函数是MSE,均方误差,均方误差是一种非常常见的损失函数

24.1

25 用来衡量真实值和误差值之间的差异,我们使用了linear输入,linear模型,他只有一个模型,他只有一个输入,和一个输出,在这里输出的个数代表神经元的个数

26、我们使用了Linear模型,他只有一个输入,我们使用了Adma优化器来进行了优化

27、下面代码是输入数据,梯度下降,T度下降,优化网络参数的代码

28、刚开始的时候,只是呈线性关系,随着训练进行,数据逐渐找到规律,不断拟合数据,损失函数的值不断减小

29、直到完全拟合数据的线性关系,这表明我们神经网络已经学习到了输入和输出之间的关系

29.1

30

30.1

31、

31.1

32

32.1

33

33.1

34

34.1

35

35.1

36

36.1

37

37.1

38

38.1

39

39.1

40

40.1

41、

41.1

42

42.1

43

43.1

44

44.1

45

45.1

46

46.1

47

47.1

48

48.1

49

49.1

50

50.1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/47924.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ppt密码】为什么PPT幻灯片不能编辑?

PPT打开之后,发现幻灯片内不能编辑,出现这种情况的原因大概有两个。 原因一:幻灯片母版 当幻灯片中出现有些固定的对象无法修改、无法编辑的时候,很有可能就是因为在母版视图中进行了设置。我们只需要再打开幻灯片母版&#xff…

适用于Android™的Windows子系统Windows Subsystem fo r Android™Win11安装指南

文章目录 一、需求二、Windows Subsystem for Android™Win11简介三、安装教程1.查看BIOS是否开启虚拟化2.安装Hyper-V、虚拟机平台3.启动虚拟机管理程序(可选)4.安装适用于Android™的Windows子系统5.相关设置 一、需求 需要在电脑上进行网课APP(无客户端只有App&…

Java入门级基础教学(史上最详细的整合)

目录 一:基础语法 1.“Hello word” 2.Java的运行机制 3. Java基本语法 1.注释、标识符、关键字 2.数据类型(四类八种) 4.类型转换 1.自动转换 2.强制转换 5.常量和变量 1.常量 2.变量 3.变量的作用域 6.运算符 1.算数运算符 …

2023/8/16 华为云OCR识别驾驶证、行驶证

目录 一、 注册华为云账号开通识别驾驶证、行驶证服务 二、编写配置文件 2.1、配置秘钥 2.2、 编写配置工具类 三、接口测试 3.1、测试接口 3.2、结果 四、实际工作中遇到的问题 4.1、前端传值问题 4.2、后端获取数据问题 4.3、使用openfeign调用接口报错 4.3、前端显示问题…

电力虚拟仿真 | 高压电气试验VR教学系统

在科技进步的推动下,我们的教育方式也在发生着翻天覆地的变化。其中,虚拟现实(VR)技术的出现,为我们提供了一种全新的、富有沉浸感的学习和培训方式。特别是在电力行业领域,例如,电力系统的维护…

ssm+vue绿色农产品推广应用网站源码和论文PPT

ssmvue绿色农产品推广应用网站041 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高…

第3步---MySQL的DDL和DML操作

第3步---MySQL的DDL和DML操作 1.DDL操作 Data Defination Language 数据定义语言。创建数据库和表的不涉及到数据的操作。 1.1DDL基本操作 1.1.1数据库相关操作 ddl:创建数据库,创建和修改表 对数据库常见的操作: 操作数据库 -- 展示数据…

PSP - 基于开源框架 OpenFold Multimer 蛋白质复合物的结构预测与BugFix

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132410296 AlphaFold2-Multimer 是一个基于 AlphaFold2 的神经网络模型,可以预测多链蛋白复合物的结构。该模型在训练和推理时都可以处…

微信小程序卡片横向滚动竖图

滚动并不是使用swiper&#xff0c;该方式使用的是scroll-view实现 Swiper局限性太多了&#xff0c;对竖图并不合适 从左往右滚动图片示例 wxml代码&#xff1a; <view class"img-x" style"margin-top: 10px;"><view style"margin: 20rpx;…

【SpringCloud】Gateway使用

文章目录 概述阻塞式处理模型和非阻塞处理模型概念阻塞式处理模型 三大核心概念 工作流程使用POMYML启动类配置路由通过编码进行配置动态路由常用的Route Predicate自定义全局过滤器自定义filter 官网 https://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.2.1…

Leetcode61 旋转链表

给你一个链表的头节点 head &#xff0c;旋转链表&#xff0c;将链表每个节点向右移动 k 个位置。 示例1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], k 2 输出&#xff1a;[4,5,1,2,3] 示例2&#xff1a; 输入&#xff1a;head [0,1,2], k 4 输出&#xff1a;[2,0,1] …

软考高级系统架构设计师(一)计算机硬件

【原文链接】软考高级系统架构设计师&#xff08;一&#xff09;计算机硬件 1.1 计算机硬件组成 1.1.1 计算机的基本硬件组成 运算器控制器存储器输入设备输出设备 1.1.2 中央处理单元&#xff08;CPU&#xff09; 中央处理单元&#xff08;CPU&#xff09;的组成 运算器…

7.11 Java方法重写

7.11 Java方法重写 这里首先要确定的是重写跟属性没有关系&#xff0c;重写都是方法的重写&#xff0c;与属性无关 带有关键字Static修饰的方法的重写实例 父类实例 package com.baidu.www.oop.demo05;public class B {public static void test(){System.out.println("这…

实时拍照翻译怎么做?几个步骤轻松翻译

现在&#xff0c;随着人们跨越国界的频率不断增加&#xff0c;语言障碍成为了一个越来越普遍的问题。为了解决这个问题&#xff0c;一些应用程序开始提供实时拍照翻译功能&#xff0c;这种功能可以通过手机摄像头拍摄文本&#xff0c;并将其翻译成用户所需的语言。那么&#xf…

Websocket原理和实践

一、概述 1.websocket是什么&#xff1f; WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务端主动向客户端推送数据。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&…

从一些常见的错误聊聊mysql服务端的关键配置 | 京东云技术团队

背景 每一年都进行大促前压测&#xff0c;每一次都需要再次关注到一些基础资源的使用问题&#xff0c;订单中心这边数据库比较多&#xff0c;最近频繁报数据库异常&#xff0c;所以对数据库一些配置问题也进行了研究&#xff0c;本文给出一些常见的数据库配置&#xff0c;说明…

(二)结构型模式:6、外观模式(Facade Pattern)(C++实例)

目录 1、外观模式&#xff08;Facade Pattern&#xff09;含义 2、外观模式的UML图学习 3、外观模式的应用场景 4、外观模式的优缺点 5、C实现外观模式的简单实例 1、外观模式&#xff08;Facade Pattern&#xff09;含义 外观模式&#xff08;Facade Pattern&#xff09;…

积跬步至千里 || 矩阵可视化

矩阵可视化 矩阵可以很方面地展示事物两两之间的关系&#xff0c;这种关系可以通过矩阵可视化的方式进行简单监控。 定义一个通用类 from matplotlib import pyplot as plt import seaborn as sns import numpy as np import pandas as pdclass matrix_monitor():def __init…

chatGPT-对话柏拉图

引言&#xff1a; 古希腊哲学家柏拉图&#xff0c;在他的众多著作中&#xff0c;尤以《理想国》为人所熟知。在这部杰作中&#xff0c;他勾勒了一个理想的政治制度&#xff0c;提出了各种政体&#xff0c;并阐述了他对于公正、智慧以及政治稳定的哲学观点。然而&#xff0c;其…

司徒理财:8.21黄金空头呈阶梯下移!今日操作策略

黄金走势分析 盘面裸k分析&#xff1a;1小时周期的行情局部于1896附近即下行通道上轨附近录得一系列的K线呈震荡下行并筑圆顶&#xff0c;上轨压制有效&#xff0c;下行通道并未突破&#xff0c;后市建议延续看下行。4小时周期局部录得一系列的纺锤线呈震荡&#xff0c;但行情整…