实话实说:中文自然语言处理的N个真实情况

文 | Liu Huanyong


按语

中文自然语言处理,目前在AI泡沫之下,真假难辨,实战技术与PPT技术往往存在着很大的差异。目前关于AI或者自然语言处理,做的人与讲的人往往是两回事。

作者简介

Liu Huanyong,就职于中国科学院软件研究所,专注金融、情报两大领域,从事事件抽取、事件演化、情感分析、事理(知识)图谱、常识推理、语言资源构建与应用等研发工作。目前主持研发自然语言处理技术开放平台数地工场、大规模实时事理知识学习系统学迹、全行业因果链查询与溯源项目寻链系统,并在智能金融、智能情报落地中负责实施了多个项目。

一些实话

  • 深度学习在自然语言处理当中,除了在分类问题上能够取得较好效果外(如单选问题:情感分类、文本分类、正确答案分类问题等),在信息抽取上,尤其是在元组抽取上基本上是一塌糊涂,在工业场景下很难达到实用水准。

  • 目前各种评测集大多是人为标注的,人为标注的大多为干净环境下的较为规范的文本,而且省略了真实生产环节中的多个环节。在评测环节中达到的诸多state-of-art方法,在真实应用场景下泛化能力很差,大多仅仅是为了刷榜而刷榜。

  • 目前关于知识图谱的构建环节中,数据大多数都还是来自于结构化数据,半结构化信息抽取次之,非结构化数据抽取最少。半结构化信息抽取,即表格信息抽取最为危险,一个单元格错误很有可能导致所有数据都出现错误。非结构化抽取中,实体识别和实体关系识别难度相当大。

  • 工业场景下命名实体识别,标配的BILSTM+CRF实际上只是辅助手段,工业界还是以领域实体字典匹配为主,大厂中往往在后者有很大的用户日志,这种日志包括大量的实体信息。因此,生产环节中的实体识别工作中,基础性词性的构建和扩展工作显得尤为重要。

  • 目前关于知识图谱推理问题,严格意义上不属于推理的范畴,最多只能相当于是知识补全问题,如评测中的知识推理任务,是三元组补全问题。

  • 目前舆情分析还是处于初级阶段。目前舆情分析还停留在以表层计量为主,配以浅层句子级情感分析和主题挖掘技术的分析。对于深层次事件演化以及对象级情感分析依旧还处于初级阶段。

  • Bert本质上仅仅是个编码器,是word2vec的升级版而已,不是无所不能,仅仅是编码能力强,向量表示上语义更为丰富,然而大多人都装糊涂。

  • 学界和业界最大的区别在于,学界以探索前沿为目的,提新概念,然后搭个草图就结束,目光并不长远,打完这一战就不知道下一战打什么,下一战该去哪里打,什么时候打,或者打一枪换个阵地再打。而业界,往往面临着生存问题,需要考虑实际问题,还是以解决实际问题为主,因此没必要把学界的那一套理念融入到生产环节中,要根据实际情况制定自己的方法。

  • 利用结构化数据,尤其是百科类infobox数据,采集下来,存入到Neo4j图数据库中,就称自己建立了知识图谱的做法是伪知识图谱做法。基于这类知识图谱,再搞个简单的问答系统,就标榜自己是基于知识图谱的智能问答,实际上很肤浅。

  • 知识图谱不是结构化知识的可视化(不是两个点几条边)那么简单,那叫知识的可视化,不是知识图谱。知识图谱的核心在于知识的图谱化,特点在于知识的表示方法和图谱存储结构,前者决定了知识的抽象表示维度,后者决定了知识运行的可行性,图算法(图遍历、联通图、最短路径)。基于图谱存储结构,进行知识的游走,进行知识表征和未知知识的预测。

  • 物以稀为贵,大家都能获取到的知识,往往价值都很低。知识图谱也是这样,只有做专门性的具有数据壁垒的知识图谱,才能带来商业价值。

  • 目前智能问答,大多都是人工智障,通用型的闲聊型问答大多是个智障,多轮对话缺失,答非所问等问题层出不穷。垂直性的问答才是出路,但真正用心做的太少,大多都是处于demo级别。

  • 大多数微信自然语言处理软文实际上都不可不看,纯属浪费时间。尤其是在对内容的分析上,大多是抓语料,调包统计词频,提取关键词,调包情感分析,做柱状图,做折线图,做主题词云,分析方法上千篇一律。应该从根本上去做方法上的创新,这样才能有营养,从根本上来说才能有营养可言。文本分析应该从浅层分析走向深层分析,更好地挖掘文本的语义信息。

  • 目前百科类知识图谱的构建工作有很多,重复性的工作不少。基于开放类百科知识图谱的数据获取接口有复旦等开放出来,可以应用到基本的概念下实体查询,实体属性查询等,但目前仅仅只能做到一度。

  • 基于知识图谱的问答目前的难点在于两个方面,1)多度也称为多跳问题,如姚明的老婆是谁,可以走14条回答,但姚明的老婆的女儿是谁则回答不出来,这种本质上是实体与属性以及实体与实体关系的分类问题。2)多轮问答问题。多轮分成两种,一种是指代补全问答, 如前一句问北京的天气,后者省略“的天气”这一词,而只说“北京”,这个需要进行意图判定并准确加载相应的问答槽。另一种是追问式多轮问答,典型的在天气查询或者酒店预订等垂直性问答任务上。大家要抓住这两个方面去做。

  • 关系挖掘是信息抽取的重要里程碑,理解了实体与实体、实体与属性、属性与属性、实体与事件、事件与事件的关系是解决真正语义理解的基础,但目前,这方面,在工业界实际运用中,特定领域中模板的性能要比深度学习多得多,学界大多采用端到端模型进行实验,在这方面还难以超越模版性能。

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android官方开发文档Training系列课程中文版:管理系统UI之隐藏状态条

原文地址:http://android.xsoftlab.net/training/system-ui/status.html 这节课将会介绍如何隐藏不同的版本的状态条。隐藏状态条可以使内容展示区域更大,因此可以提供一种更强的身临其境的用户体验。 含有状态条的APP: 隐藏状态条的APP&am…

论文浅尝 - ACL2020 | 用于回答知识库中的多跳复杂问题的查询图生成方法

论文笔记整理:谭亦鸣,东南大学博士。来源:ACL 2020链接:https://www.aclweb.org/anthology/2020.acl-main.91.pdf1.介绍在以往的工作中,知识图谱复杂问答一般被分为两种类型分别处理:其一是带有约束的问题&…

深入理解JSCore

背景 动态化作为移动客户端技术的一个重要分支,一直是业界积极探索的方向。目前业界流行的动态化方案,如Facebook的React Native,阿里巴巴的Weex都采用了前端系的DSL方案,而它们在iOS系统上能够顺利的运行,都离不开一个…

全球44家机构,55位大佬,历时两年,打造最强NLG评测基准!

文 | 小轶(大家好,我是已经鸽了夕总仨月没写文章了的小轶(y)!新的一年一定改过自新,多读paper多写稿,望广大读者敦促(ง •̀_•́)ง)今天要和大家分享的是卖萌屋学术站上的本月最热…

LeetCode 171. Excel表列序号(26进制转10进制)

1. 题目 给定一个Excel表格中的列名称,返回其相应的列序号。 例如,A -> 1B -> 2C -> 3...Z -> 26AA -> 27AB -> 28 输入: "A" 输出: 1输入: "AB" 输出: 28输入: "ZY" 输出: 701来源:力扣&…

用户评论标签的抽取

原文链接:https://blog.csdn.net/shijing_0214/article/details/71036808 无意中在知乎中看到一个问题:淘宝的评论归纳是如何做到的? 了解之后觉得较为容易实现,就简单实现了一个对用户评论的标签抽取功能,纯属兴趣所致…

开源开放|数据地平线通过OpenKG开放全行业因果事理、大规模实时事理等7类常识知识库...

本期介绍开放中文简称、中文同义、中文抽象、全行业因果事理、实体概念描述、实时事理知识库、军事武器装备知识等七个事理相关知识图谱。截至目前,该七个数据集规模达数千万、累计下载次数达两千余次,可用于底层事理推理、查询扩展、数据增强等多个自然…

写给工程师的十条精进原则

引言 时间回到8年前,我人生中第一份实习的工作,是在某互联网公司的无线搜索部做一个C工程师。当时的我可谓意气风发,想要大干一场,结果第一次上线就写了人生中第一个Casestudy。由于对部署环境的不了解,把SVN库里的配置…

我删掉了Transformer中的这几层…性能反而变好了?

文 | chaos编 | 小轶基于Transformer结构的各类语言模型(Bert基于其encoder,Gpt-2基于其decoder)早已经在各类NLP任务上大放异彩,面对让人眼花缭乱的transformer堆叠方式,你是否也会感到迷茫?没关系,现在让…

LeetCode 821. 字符的最短距离

1. 题目 给定一个字符串 S 和一个字符 C。返回一个代表字符串 S 中每个字符到字符串 S 中的字符 C 的最短距离的数组。 示例 1:输入: S "loveleetcode", C e 输出: [3, 2, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0]来源:力扣(LeetCode) 链…

论文浅尝 - ESWC2020 | ESBM:一个面向实体摘要的评测集

本文转载自公众号:南大Websoft。实体摘要(Entity Summarization),是知识图谱研究与应用中的一个关键问题。南京大学Websoft团队为此制作了一个评测集,称作ESBM,是目前可以公开获取的规模最大的评测集。这项…

美团在O2O场景下的广告营销

美团作为中国最大的在线本地生活服务平台,覆盖了餐饮、酒店、旅行、休闲娱乐、外卖配送等方方面面生活场景,连接了数亿用户和数百万商户。如何帮助本地商户开展在线营销,使得他们能快速有效地触达目标用户群体提升经营效率,是美团…

LeetCode 202. 快乐数(快慢指针)

1. 题目 2. 解题 一个数经过若干次各位数平方和后,会等于它自己使用类似环形链表的快慢指针法,最终快慢指针相遇,若不为1则是不快乐数 class Solution { public:int bitSquareSum(int n) {int sum 0, bit;while(n > 0){bit n % 10;su…

全栈深度学习第4期: 机器学习岗位区别与团队管理

一起追剧鸭简介Berkeley全栈深度学习追剧计划是由夕小瑶的卖萌屋发起的优质公开课打卡项目,通过微信群为同期追剧的小伙伴提供交流平台。关于该计划的详请见这里。Berkeley深度学习追剧群目前已有1000小伙伴加入,公众号后台回复口令 深度学习追剧 入群。…

会议交流 | DataFunCon 线上大会 - 知识图谱专题论坛

OpenKG开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。点击阅读原文,进入 OpenKG 博客。

我国政务大数据政策的文本分析:推进逻辑与未来进路

原文地址:https://www.sohu.com/a/238844423_99983415 摘要:[目的/意义]从已颁布政策文件中找出我国推进政务大数据发展和应用的内在逻辑, 为优化未来的政策路径提供对策建议。[方法/过程]通过政府门户网站收集189条有效政策文本, 综合运用词频分析软件…

Flutter原理与实践

Flutter是Google开发的一套全新的跨平台、开源UI框架,支持iOS、Android系统开发,并且是未来新操作系统Fuchsia的默认开发套件。自从2017年5月发布第一个版本以来,目前Flutter已经发布了近60个版本,并且在2018年5月发布了第一个“R…

LeetCode 522. 最长特殊序列 II

1. 题目 给定字符串列表,你需要从它们中找出最长的特殊序列。 最长特殊序列定义如下:该序列为某字符串独有的最长子序列(即不能是其他字符串的子序列)。 子序列可以通过删去字符串中的某些字符实现,但不能改变剩余字…

论文浅尝 - 计算机工程 | 大规模企业级知识图谱实践综述

本文转载自公众号:计算机工程。大规模企业级知识图谱实践综述王昊奋, 丁军, 胡芳槐, 王鑫中文摘要:近年来,知识图谱及其相关技术得到快速发展,并被广泛应用于工业界各种认知智能场景中。在简述知识图谱相关研究的基础上&#xff0…

2021年了,对话系统凉透了吗?

文 | 兔子酱编 | 夕小瑶大家好,我是可盐可甜的兔子酱,一枚卖萌屋的资深潜水小编,今天终于有了自己的第一篇文章,希望耗时一周撰写的本文能让大家有所收获~这篇文章,算是对自己在头部大厂2年算法岗炼丹经历的一个经验浓…