聊聊推荐系统中的偏差

文 | 成指导
源 | 知乎

背景

推荐系统中大量使用用户行为数据,作为系统学习的标签或者说信号。但用户行为数据天生存在各式各样的偏差(bias),如果直接作为信号的话,学习出的模型参数不能准确表征用户在推荐系统中的真实行为意图,造成推荐效果的下降。
因此,本篇聊一聊推荐系统中常见的偏差,与相应的去偏思路与方法。本篇的主要脉络依据中科大何向南教授、合工大汪萌教授联合在 TKDE 上的一篇综述文章展开:Bias and Debias in Recommender System: A Survey and Future Directions

推荐的反馈闭环

推荐系统是由用户、数据、模型,三者互相作用产生的一个动态的反馈闭环。闭环分为三个阶段:

User -> Data

用户会产生大量的 user-item(对抖音是用户-视频、对头条是用户-文章)交互数据,以及各类周边信息包括 user 特征、item 属性、交互上下文信息等。其中 user-item 交互数据中 user 集合被表示成 ,item 集合被表示成

user 与 item 两者间互相作用形成反馈矩阵(feedback matrix),类型分为两种:

  • 隐式反馈:表示为 ,矩阵中元素 是二值化 0、1 取值表示 user u 是否发生与 item i 的交互行为(bool 类型,例如购买、点击、查看等行为)

  • 显式反馈:表示为 ,矩阵中元素 是 user u 对 item i 的评分(float 类型,例如豆瓣评分

Data -> Model

根据历史观测数据,训练模型预测 user 是否采纳 item 的程度。

Model -> User

模型返回预测推荐结果给到用户,进一步影响用户的未来行为和决策。

三个阶段不断循环,在闭环中逐渐加剧各阶段的 bias,会造成更严重的问题。

常见偏差

数据偏差

显式反馈数据 - Selection Bias

定义:当用户可以自由选择 item 进行评分,可观测到的评分并不是所有评分的有代表性样本。换而言之,评分数据是“非随机缺失”(missing not at random, MNAR)的

这个偏差的来源比较好理解,我们也可以想想自己是不是也是这样:倾向于评分喜爱的 item(例如,热衷粉丝的电影、歌曲等) ,倾向于评分特别好或者特别差的 item(例如,去看电影很想夸好片,很想喷烂片)

显式反馈数据 - Conformity Bias

定义:用户评分倾向于与其他人相似,即使是完全基于他们自己的判断,也会受到影响

这个偏差是由从众心理导致的。对于大众一致喜欢/讨厌的 item,个体用户做判断时经常会受到外界声音的影响

隐式反馈数据 - Exposure Bias

定义:仅有一部分特定 item 曝光给了用户,因此没有观测到的交互行为并不直接等同于是训练中的负例

可以想一想,对于没有产生交互行为(没有点击、购买等行为)的数据样本而言,其实是由 2 个原因造成:

  1. 用户的确不喜欢当前 item;

  2. 当前 item 没有曝光给用户(对于从没刷到过的视频,我们无法确定自己是否喜欢)

对于数据曝光问题,之前的研究有几个角度:

  1. 当前版本的曝光取决于上一个推荐系统版本的策略,决定了如何展现;

  2. 因为用户会主动搜索或寻找感兴趣的 item,因此用户选择成为了影响曝光的因素,使得高度相关/吸引力(例如标题党、美女图片类新闻)的 item 更容易被曝光;

  3. 用户的背景关系是影响曝光的一个因素,例如好友、社区、地理位置等因素会影响曝光;

  4. 流行的 item 会更容易曝光给用户,因此 Popularity Bias 是另一种形式 Exposure Bias

隐式反馈数据 - Position Bias

定义:用户倾向于无视相关性地去对推荐列表中更高位置上的 item 产生交互行为

位置偏差在搜索系统中是一个经典并持续存在的偏差,同样在推荐系统中也会存在,用户普遍会对于头部观测到的 item 产生更多点击(还没有产生审美疲劳?)。尤其会对“用户点击行为”作为正例信号进行学习的模型,位置偏差会在训练、评估阶段产生错误影响

模型偏差

Inductive Bias

偏差不一定总是有害的,实际上一些归纳偏差被故意加入到模型设计中为了实现某些特性

定义:为了模型更好地学习目标函数并且泛化到训练数据上,会设置一些模型假设。假设未必都是准确的,会产生一些偏差

列举某些经典的假设(未必造成有害影响):

  1. 用户交互行为可以由向量内积表示

  2. Adaptive negative sampler 提出用于增加学习速度,即使结果损失函数不同于最初分布

  3. CNN 网络的局部特征重要性

推荐结果的偏差与不公平性

Popularity Bias

定义:流行的 item 会被更频繁地推荐、产生用户交互

长尾效应或者说二八定律带来了这个偏差,会降低个性化层次、用户对于平台的惊喜体验,造成马太效应

Unfairness

定义:整个系统不公平歧视某些群体用户

这个偏差的本质原因是数据的不平衡性,会带来社会性问题(年龄、性别、种族、社交关系多少等歧视)。不公平的数据,会造成更不公平的用户体验,产生恶循环

不公平性更多是由于系统数据分布不平衡造成的,例如某个基本由中老年用户组成的 app 较难对于年轻用户的行为进行建模,系统推荐出的视频会更倾向于有“年代感”

反馈闭环加剧各类偏差

User->Data->Model->User 的不断循环,会在已有偏差的基础上,进一步放大偏差

这篇文章简单介绍了一些推荐系统中常见的偏差 bias,并进行了一些简单的分类。这里的分类体系并非绝对合理但却具有一定代表性。

寻求报道、约稿、文案投放:
添加微信xixiaoyao-1,备注“商务合作”

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478477.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云端的SRE发展与实践

本文根据作者在美团点评第21期技术沙龙的分享记录整理而成。 SRE(Site Reliability Engineering)是Google于2003年提出的概念,将软件研发引入运维工作。现在渐渐已经成为各大互联网公司技术团队的标配。 美团点评作为综合性多业务的互联网生活…

一种单独适配于NER的数据增强方法:DAGA

链接:http://www.elecfans.com/d/1468784.html 本文首先介绍传统的数据增强在NER任务中的表现,然后介绍一种单独适配于NER的数据增强方法,这种方法生成的数据更具丰富性、数据质量更高。0 前言 在NLP中有哪些数据增强技术?这一定是…

LeetCode 80. 删除排序数组中的重复项 II

1. 题目 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素最多出现两次,返回移除后数组的新长度。 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。 来源:力扣…

技术沙龙 | 图神经网络(GNN)最新研究进展分享

由于深度学习在可推理和可解释性方面的局限性,结合图计算与深度学习的图神经网络 ( GNN ) 成为近期学术界和工业界研究的热点新方向之一,并在社交网络、推荐系统等领域得到了广泛的应用。本次技术沙龙,由北京邮电大学 GAMMA Lab 博士生纪厚业…

科研福利!国内TOP3的超算中心,免费领2000核时计算资源

长久以来,超级计算机一直是各国竞相角逐的科技制高点,也是国家综合科技实力的体现,尤其是近几年,中国和美国在超算领域的竞争已经进入“白热化”。2020年,我国超级计算机在《全球超级计算机500强榜单》中首次超越美国&…

深度学习在美团推荐平台排序中的运用

美团作为国内最大的生活服务平台,业务种类涉及食、住、行、玩、乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为。随着业务的飞速发展,美团的用户和商户数在快速增长。在这样的背景下&#xff0…

LeetCode 451. 根据字符出现频率排序(map+优先队列)

1. 题目 给定一个字符串,请将字符串里的字符按照出现的频率降序排列。 输入: "tree"输出: "eert"2. 优先队列解题 先用map统计字符出现次数再将字符何其次数插入优先队列出队 struct cmp { //写在类内也可以,写在函数里也行bool…

论文浅尝 - AAAI2020 | 小样本知识图谱补全

笔记整理 | 刘克欣,天津大学硕士链接:https://arxiv.org/pdf/1911.11298.pdf动机知识图谱对于许多下游应用(例如搜索,知识问答和语义网)至关重要。然而,现有知识图谱面临不完整的问题。知识图谱补全工作能让…

ACL 2021|美团提出基于对比学习的文本表示模型,效果提升8%

文 | 渊蒙 如寐 思睿等尽管基于BERT的模型在NLP诸多下游任务中取得了成功,直接从BERT导出的句向量表示往往被约束在一个很小的区域内,表现出很高的相似度,因而难以直接用于文本语义匹配。为解决BERT原生句子表示这种“坍缩”现象,…

Android远程调试的探索与实现

作为移动开发者,最头疼的莫过于遇到产品上线以后出现了Bug,但是本地开发环境又无法复现的情况。常见的调查线上棘手问题方式大概如下: 方法优点缺点联系用户安装已添加测试日志的APK方便定位问题需要用户积极配合,如果日志添加不全…

超硬核 ICML’21 | 如何使自然语言生成提速五倍,且显存占用减低99%

文 | 炼丹学徒编 | 小轶我们忽略掉引言和介绍,直接把工作的效果丢上来,相信就足够令自然语言生成的相关同学心动——对于任何一个已有的Transformer生成模型,只需根据本文算法更改attention的计算顺序,就可以实现成倍速度提升&…

论文浅尝 | Convolutional 2D knowledge graph embedding

笔记整理 | 孙悦,天津大学1. 介绍:知识图的链接预测是预测实体之间缺失关系的任务。先前有关链接预测的工作集中在浅,快速的模型上,这些模型可以缩放到大型知识图例如基于基于平移变换的 TransE 系列。但是,这些模型比…

sysbench在美团点评中的应用

如何快速入门数据库?以我个人经验来看,数据库功能和性能测试是一条不错的捷径。当然从公司层面,数据库测试还有更多实用的功能。这方面,美团点评使用的是知名工具sysbench,主要是用来解决以下几个问题: 统一…

[中文事件抽取]DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Lab

[中文事件抽取]DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Lab: ACL 2018DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled Training DataAuthorHang Yang, Yu…

论文浅尝 - ACL2020 | 通过集成知识转换进行多语言知识图谱补全

笔记整理 | 谭亦鸣,东南大学博士生概述预测图谱中缺失的事实(fact)是知识图谱构建与推理中的一个重要任务,近年来也被许多KG embedding研究的关注对象。虽然目前的KG embedding方法主要学习和预测的是单个图谱中的事实,但是考虑到KG之间不同规…

LsLoader——通用移动端Web App离线化方案

由于JavaScript(以下简称JS)语言的特性,前端作用域拆分一直是前端开发中的首要关卡。从简单的全局变量分配,到RequireJS实现的AMD模块方式,browserify/webpack实现的静态引用方式。前端的业务逻辑也从一个个精心按顺序…

ACL'21 | debug完的神经网络,如何测试是否仍然存在bug?

文 | Sherry回归测试熟悉软件工程的小伙伴们一定知道回归测试:修改了旧代码后,重新进行测试以确认修改没有引入新的错误或导致其他代码产生错误。它可以大幅降低系统测试、维护升级等阶段的成本。随着深度学习网络的不断发展,越来越多的系统都…

LeetCode 198. 打家劫舍(DP)

1. 题目 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存…

论文浅尝 - ACL2020 | 利用常识知识图对会话流进行显式建模

笔记整理 | 韩振峰,天津大学硕士链接:https://arxiv.org/pdf/1911.02707.pdf动机人类对话自然地围绕相关概念发展,并分散到多跳概念。本文提出了一种新的会话生成模型——概念流(ConceptFlow),它利用常识知识图对会话流进行显式建…

百度NLP、视频搜索团队招聘算法实习生!

致力于连接最靠谱的算法岗与最强的求职者招聘贴投放请联系微信xixiaoyao-1问答工作职责研发文本问答、多模态问答、阅读理解、端到端问答等技术,利用NLP理论和方法解决实际问题结合数据、算力优势,在百度的搜索、凤巢等产品和业务实现技术落地研究问答、…