数学教育中的AI:NeurIPS’21 Workshop 欢迎投稿!

Workshop主页
https://mathai4ed.github.io

数学推理是一种人类独特的智慧能力,也是人类在对科学和知识的探寻道路上不可缺少的基石。不过,数学学习通常是一项极具挑战性的过程,因为它依赖于指导者对学习内容的设计、教学和评估。从教育的角度来看,致力于帮助这一过程的人工智能系统能够为使用者提供更多的包容性和可及性,并且提高他们的学习效率和对数学的理解。此外,构建能够理解、创造、和使用数学推理的系统能为研究人工智能推理提供独特的平台。在此次研讨会中,本次Workshop将探索人工智能在数学教育中的应用,包括:

●   教学:有效帮助学生进行数学学习的智能教辅系统

●   评估:人工智能辅助评分系统(如Gradescope)和个性化测试平台(如IXL)

●   辅导:高级数学教育中的符号化数学工具(如Mathematica,Maple)

这些应用离不开人工智能和机器学习领域里核心问题的研究,例如:

解释能力:打开“黑匣子”,提供透明、可解释的人工智能模型

推理能力:可以实现形式化或非形式化的推理、与人类进行交流互动的人工智能体

核心方法:应用在数学领域里的多模态、逻辑推理、符号推理等方法

这些应用技术的实现不仅要求数学和人工智能研究的不断创新,还需要对实际教学场景的深入理解。因此,本次Workshop邀请了拥有不同研究背景、来自不同机构和学科领域的专家,与他们共同讨论和探寻在现实教学场景中,将人工智能融入数学教育的前景和挑战。Workshop的讨论话题包括但不限于:

●   可及性:人工智能如何如何最有效地帮助不同背景的学生进行数学学习?

●   应用性:人工智能在数学教育中的哪些近期和长期应用中最具前景?

●   方法:哪些研究进展是实现这些应用所必需的?

●   展望未来:数学教育和研究的未来是什么?

受邀嘉宾

目前受邀参加Workshop的嘉宾有:

组织者

(按字母排列)

●   Xiaodan Liang (梁小丹):中山大学智能工程学院副教授,研究方向为机器学习、计算机视觉、智慧教育

●   Pan Lu:加州大学洛杉矶分校计算机博士生,研究方向为多模态学习和常识推理。

●   Jay McClelland:斯坦福大学心理学系教授,心智、大脑和计算中心主任,研究方向为认知和决策。

●   Sean Welleck:华盛顿大学计算机系博士后,研究方向为自然语言理解与数学推理。

●   Yuhuai (Tony) Wu:斯坦福大学博士后,谷歌研究科学家,研究方向为机器推理。

●   Eric P. Xing:卡内基梅隆大学教授,默罕默德·本·扎耶德人工智能大学(MBZUAI)校长,研究方向为机器学习与人工智能。

投稿方式

提交给MathAI4Ed 2021的内容限制在4页以内,但参考文献和附录可以不限页数。后者不一定会被审稿人阅读。我们要求并建议作者仅依靠补充材料来包括不适合4页内容的小细节(例如,超参数设置、可重复性信息等)。评审过程是双盲的,所以请确保所有论文都有适当的匿名性。

所有提交的论文必须使用LaTeX格式,使用NeurIPS 2021 MathAI4Ed论文格式:
https://mathai4ed.github.io/img/NeurIPS2021_MathAI4ED.zip。

所有被接受的论文将在虚拟海报会议上展示,一些论文将被选作口头报告。Workshop也允许最近已经发表或正在提交的论文。请在提交时对这些论文进行相应的标注。这些论文的页数限制为4页。被接受的论文将在MathAI4Ed的主页上公布,但是是非存档的。

论文提交入口:
https://cmt3.research.microsoft.com/MATHAI4ED2021。

如有任何疑问,请发电子邮件至:
mathai4ed.neurips2021@gmail.com

重要日期

●   提交截止日期:2021 年 10 月 6日(11:59pm Pacific Time)

●   录取通知:2021 年 10 月 23 日

●   Camera-Ready 提交:2021 年 11 月 1 日

●   Workshop 日期:2021 年 12 月 14 日

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478098.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 696. 计数二进制子串

1. 题目 给定一个字符串 s,计算具有相同数量0和1的非空(连续)子字符串的数量,并且这些子字符串中的所有0和所有1都是组合在一起的。 重复出现的子串要计算它们出现的次数。 示例 1 : 输入: "00110011" 输出: 6 解释: 有6个子串具有相同数量…

论文浅尝 - ISWC2021 | 当知识图谱遇上零样本视觉问答

论文题目:Zero-shot Visual Question Answering using Knowledge Graph本文作者:陈卓(浙江大学)、陈矫彦(牛津大学)、耿玉霞(浙江大学)、Jeff Z. Pan(爱丁堡大学)、苑宗港(华为)、陈华钧(浙江大学)发表会议:ISWC 2021论文链接:htt…

Java 8系列之重新认识HashMap

HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。本文结合JDK1.7和JDK1.8的区别&…

LeetCode 1042. 不邻接植花(图的数据结构)

1. 题目 有 N 个花园,按从 1 到 N 标记。在每个花园中,你打算种下四种花之一。 paths[i] [x, y] 描述了花园 x 到花园 y 的双向路径。 另外,没有花园有 3 条以上的路径可以进入或者离开。 你需要为每个花园选择一种花,使得通…

我用Transformer修复代码bug

源:机器之心本地化 Bug 并修复程序是软件开发过程中的重要任务。在本篇论文中,来自微软 CloudAI 部门的研究者介绍了 DeepDebug,一种使用大型预训练模型 transformer 进行自动 debug 的方法。首先,研究者基于 20 万个库中的函数训…

论文浅尝 | 一种基于递归超图的知识图谱问答方法

笔记整理 | 谭亦鸣,东南大学博士生来源:EACL’21链接:https://www.aclweb.org/anthology/2021.eacl-main.35.pdf概述与动机本文提出了一种基于递归超图的知识图谱问答方法RecHyperNet,作者认为人回答问题时倾向于在推理过程中递归…

模拟登录——添加cookies,使用postmanget请求网页数据

摘要: 在进行爬虫时,除了常见的不用登录就能爬取的网站,还有一类需要先登录的网站。比如豆瓣、知乎,以及上一篇文章中的桔子网。这一类网站又可以分为:只需输入帐号密码、除了帐号密码还需输入或点击验证码等类型。本文…

论文浅尝 | 神经网络是如何外推的:从前馈神经网络到图神经网络

笔记整理 | 王泽元,浙江大学在读硕士,研究方向为图神经网络,对比学习。什么是外推?指从已知数据的孤点集合中构建新的数据的方法。与插值(interpolation)类似,但其所得的结果意义更小&#xff0…

恕我直言,很多调参侠搞不清数据和模型谁更重要

作者:Dario Radecic,Medium 高质量技术博主编译:颂贤▲图源:[Brandon Lopez]一般的AI课程会介绍很多如何通过参数优化来提高机器学习模型准确性的方法,然而这些方法通常都存在一定的局限性。这是因为我们常常忽视了现代…

LeetCode 720. 词典中最长的单词(Trie树)

1. 题目 给出一个字符串数组words组成的一本英语词典。从中找出最长的一个单词,该单词是由words词典中其他单词逐步添加一个字母组成。若其中有多个可行的答案,则返回答案中字典序最小的单词。 若无答案,则返回空字符串。 示例 1: 输入: …

论文浅尝 | 通过知识到文本的转换进行知识增强的常识问答

笔记整理:陈卓,浙江大学在读博士,主要研究方向为低资源学习和知识图谱论文链接:https://www.aaai.org/AAAI21Papers/AAAI-10252.BianN.pdf发表会议:AAAI 2021动机文章提出了对于未来CQA(Commonsense QA)问题的三个见解…

聊聊机器翻译界的“灌水与反灌水之战”!

文 | Willie_桶桶编 | 智商掉了一地针对机器翻译领域如何提高和判断实验可信度,这篇ACL2021的oustanding paper迈出了关键的一步!(来读!全文在末尾)作为不停读论文和调参炼丹的科研党,也许在我们的身边总会…

LeetCode 273. 整数转换英文表示

1. 题目 将非负整数转换为其对应的英文表示。可以保证给定输入小于 231 - 1 。 示例 1: 输入: 123 输出: "One Hundred Twenty Three"示例 2: 输入: 12345 输出: "Twelve Thousand Three Hundred Forty Five"示例 3: 输入: 1234567 输出: "One Mill…

数据标注平台doccano----简介、安装、使用、踩坑记录

1.doccano的安装与初始配置 1.1 doccano的用途 document classification 文本分类sequence labeling 序列标注,用于命名实体识别sequence to sequence seq2seq,用于翻译speech to text 语音转文本标注 命名实体标注 序列标注(如机器翻译&…

月圆花美 中秋快乐!

OpenKGOpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。点击阅读原文,进入 OpenKG 网站。

大众点评支付渠道网关系统的实践之路

业务的快速增长,要求系统在快速迭代的同时,保持很好的扩展性和可用性。其中,交易系统除了满足上述要求之外,还必须保持数据的强一致性。对系统开发人员而言,这既是机遇,也是挑战。本文主要梳理大众点评支付…

拍不完的脑袋:推荐系统打压保送重排策略

文 | 水哥源 | 知乎saying1.懂模型不只是要知道模型能干什么,更要知道它不能干什么2.在从业一段时间后应该有一次“转职”,如果你相信模型无所不能,你应该走科研路线;如果你对模型不是很放心,那你应该成为一名工程师3.…

LeetCode 572. 另一个树的子树(二叉树迭代器)

1. 题目 给定两个非空二叉树 s 和 t,检验 s 中是否包含和 t 具有相同结构和节点值的子树。s 的一个子树包括 s 的一个节点和这个节点的所有子孙。s 也可以看做它自身的一棵子树。 示例 1: 给定的树 s:3/ \4 5/ \1 2 给定的树 t:4 / \1 2 返回 tr…

论文浅尝 | Multimodal Few-Shot Learning with Frozen Language Models

笔记整理:李磊,浙江大学硕士,研究方向为自然语言处理 链接:https://arxiv.org/abs/2106.13884动机大规模的自回归语言模型(如GPT)在预训练阶段学习到了大量的知识,具有很好的学习新任务的能力&a…

Spark性能优化指南——高级篇

继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。 调优概述 有的时候,我们可能会遇到大数据计算中一…