论文浅尝 | 通过知识到文本的转换进行知识增强的常识问答

ee8654d6d793a95a7bf209d3c271c901.png

笔记整理:陈卓,浙江大学在读博士,主要研究方向为低资源学习和知识图谱

论文链接:https://www.aaai.org/AAAI21Papers/AAAI-10252.BianN.pdf

发表会议:AAAI 2021

动机

文章提出了对于未来CQA(Commonsense QA)问题的三个见解,首先其对于文本应该是比较敏感的,需要对于不同的知识选择不同的文本,然后要能够利用上异构的知识信息,同时它要使用到具有丰富常识知识的语言模型。此外,本文提出了3个未来的发展方向,然后在文章里提出了4个见解和挑战:

1.基于GNN的网络,很难把这些所有的有效的外部知识给利用上。2.这些外部知识应该用一种比较简单的方法注入到不同的模型里面,并且这种方法不应该是一些模型特定的方法,所以作者就后面提出了把知识转化成文本的形式。3.知识主要是三元组的形式存在,但是问题和答案是文本的形式,这存在一种模式上的一个gap。4.一个知识库里面有很多个这样的三元组,但是往往只有数个是跟某一个问题相关,这是一种稀疏性问题。

18f991cf510f8f3bdc628e0074f699b1.png

模型

模型分为三大步骤,其中第一步是把知识进行一个检索,第三步是进行一个MRC的阅读理解的任务,这两个其实比较简单。中间这个步骤就是它的创新点——如何把一个 QA的任务转化成一个阅读理解任务。

37bdaea04bc5ceedbb2d5af1854efb5f.png

具体来说,第一步是根据一个问题和对应的候选答案,作者到一个知识库里面检索出来这样一个子图,第二步是把这个子图变成了一串知识的描述的文本,然后根据这个描述的文本以及这个问题和答案拼接到一起,最后放到这样一个MRC的预训练语言模型中,最后得到它的一个答案的概率分布,怎么预测到正确的答案。

第二步用了三种形式来实现这样一个fact到text的转换。分别是

(1)基于模板的方法,基于翻译的方法和基于检索的方法。其中基于模板大家应该也都能想到,就是说我把每一个关系定义一个模板,比如说像这个例子举的这样。然后如果是有多个三元组的话,那就把这些三人组的模板转化成之后的短句拼接成一个长句,并作为它这一个子图的知识表示。

(2)基于翻译的方法,作者觉得第一种方法最后得到的这样一段话可能是逻辑上不通的,因为每一个短句之间都独立也没有什么联系,而作者第二种方法就是把这样一一些短句用一种类似于机器翻译的方法,让它变得更加的多样化,然后更加的流畅,类似于进行了这样一个转化。

(3)基于搜索的方法,作者觉得不管是第一种还是第二种方法,它都存在语句不在真实世界中出现过的问题,所以用了一种基于检索的方法,在真实的维基百科语料中,基于这些出现的这些实体进行文本段落检索,最后把检验得到的语句作为知识的表示形式,然后它可以用到一些具体方法,这里不展开大家感兴趣的可以去看原文。

82ccbbd177699e0849c9b00a1ea84833.png

实验

作者在不同预训练模型的基础上都进行了实验,因为因为CQA领域里面很多模型是基于不同的预训练模型实现的,分别达到了各自的SOTA,作者把作者们的方法加上作者这样一个knowledge-to-text的方法之后,转换成MRC任务,都实现了一个少量的提升。同时它也构造了一个golden knowledge,人工的把每个知识对应到一个ground truth knowledge上面,来进行一个上界的判定,看这样的方法它能够达到的上界是多少。可以看到跟人类的效果比起来已经接近了。

830a62a31fa07f1ca1342d8b0858f66d.png

后面的一些 case study分别是证明这个方法加了知识之后到底有多少提升,在具体的例子上作者把那些问题分了一些类别。然后还进行了错误分析,但好像也没有体现出什么有价值的信息,因为这里面给出了几个错误类别基本上都是因为KG本身的一些知识不足所导致的,比如说作者知识区分度不够,就像第例子中飞机可以加速也可以减速,但是这两个东西都不能够精确的回答这一个问题:当飞机到达的时候,到底是该加速还是该减速。此外还有一些错误原因,比如知识根本就不存在,每一个问题可能找不到对应的知识。或者是知识噪音太多导致判断失误。

d7b4493d42e42102fdb880d210a0d309.png

总结

该论文核心观点是 MRC的难度小于常识问答,所以作者把一个难的任务转化成一个容易的任务,这是作者的一个想法。另外一个想法就是把知识直接用一种更显著的方法(文本)建模,应该也许会好于图的结果(实验里面其实有一些方法是基于gnn的,但是那些方法的效果并不理想,作者觉得既然作者不能够把所有的知识都很好的利用起来,但是如果把它用一种更显著的方法建模的话,利用效果会更好一些。)。此外作者提出了一个观点:哪怕是最好的预训练语言模型,比如t5(训练语调是很庞大的),始终还是不能够包含足够的常识知识。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

d1296bdfdbf644fe56e387de830bfcf8.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478083.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

聊聊机器翻译界的“灌水与反灌水之战”!

文 | Willie_桶桶编 | 智商掉了一地针对机器翻译领域如何提高和判断实验可信度,这篇ACL2021的oustanding paper迈出了关键的一步!(来读!全文在末尾)作为不停读论文和调参炼丹的科研党,也许在我们的身边总会…

LeetCode 273. 整数转换英文表示

1. 题目 将非负整数转换为其对应的英文表示。可以保证给定输入小于 231 - 1 。 示例 1: 输入: 123 输出: "One Hundred Twenty Three"示例 2: 输入: 12345 输出: "Twelve Thousand Three Hundred Forty Five"示例 3: 输入: 1234567 输出: "One Mill…

数据标注平台doccano----简介、安装、使用、踩坑记录

1.doccano的安装与初始配置 1.1 doccano的用途 document classification 文本分类sequence labeling 序列标注,用于命名实体识别sequence to sequence seq2seq,用于翻译speech to text 语音转文本标注 命名实体标注 序列标注(如机器翻译&…

月圆花美 中秋快乐!

OpenKGOpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。点击阅读原文,进入 OpenKG 网站。

大众点评支付渠道网关系统的实践之路

业务的快速增长,要求系统在快速迭代的同时,保持很好的扩展性和可用性。其中,交易系统除了满足上述要求之外,还必须保持数据的强一致性。对系统开发人员而言,这既是机遇,也是挑战。本文主要梳理大众点评支付…

拍不完的脑袋:推荐系统打压保送重排策略

文 | 水哥源 | 知乎saying1.懂模型不只是要知道模型能干什么,更要知道它不能干什么2.在从业一段时间后应该有一次“转职”,如果你相信模型无所不能,你应该走科研路线;如果你对模型不是很放心,那你应该成为一名工程师3.…

LeetCode 572. 另一个树的子树(二叉树迭代器)

1. 题目 给定两个非空二叉树 s 和 t,检验 s 中是否包含和 t 具有相同结构和节点值的子树。s 的一个子树包括 s 的一个节点和这个节点的所有子孙。s 也可以看做它自身的一棵子树。 示例 1: 给定的树 s:3/ \4 5/ \1 2 给定的树 t:4 / \1 2 返回 tr…

论文浅尝 | Multimodal Few-Shot Learning with Frozen Language Models

笔记整理:李磊,浙江大学硕士,研究方向为自然语言处理 链接:https://arxiv.org/abs/2106.13884动机大规模的自回归语言模型(如GPT)在预训练阶段学习到了大量的知识,具有很好的学习新任务的能力&a…

Spark性能优化指南——高级篇

继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。 调优概述 有的时候,我们可能会遇到大数据计算中一…

LeetCode 342. 4的幂(位运算)

文章目录1. 题目2. 解题2.1 通用解法2.2 找规律1. 题目 给定一个整数 (32 位有符号整数),请编写一个函数来判断它是否是 4 的幂次方。 示例 1: 输入: 16 输出: true示例 2: 输入: 5 输出: false进阶: 你能不使用循环或者递归来完成本题吗? …

格局打开,带你解锁 prompt 的花式用法

文 | Severus就如同《倚天屠龙记》中的主角张无忌,语言模型修炼了深厚的内功,但是遇到他的乾坤大挪移之前,他空有一身本领却不会用。但学会之后,于所有武功又都融会贯通。光明顶上血战六大派,他可以打出比崆峒派威力更…

论文浅尝 | 基于异质图交互模型进行篇章级事件抽取

笔记整理:娄东方,浙江大学 & 恒生电子股份有限公司博士后,研究方向为事件抽取来源:ACL2021链接:https://arxiv.org/abs/2105.14924GitHub项目地址:https://github.com/RunxinXu/GIT本文关注篇章事件抽取…

GAN 的内在漏洞,只看眼睛就能找出虚拟人脸?

本文转载自公众号“夕小瑶的卖萌屋”,专业带逛互联网算法圈的神操作 -----》我是传送门 关注后,回复以下口令: 回复【789】 :领取深度学习全栈手册(含NLP、CV海量综述、必刷论文解读) 回复【入群】&#xf…

LeetCode 869. 重新排序得到 2 的幂(排序 全排列)

1. 题目 给定正整数 N ,我们按任何顺序(包括原始顺序)将数字重新排序,注意其前导数字不能为零。 如果我们可以通过上述方式得到 2 的幂,返回 true;否则,返回 false。 示例 1: 输入…

Spark性能优化指南——基础篇

在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。在美团•大众点评,已…

会议交流 | 京东硅谷首席科学家领衔,图机器学习峰会火热开启!

2021年10月10日,DataFunSummit:图机器学习在线峰会将如约而至。本次峰会的形式再次创新,由图与推荐与DataFun联合策划、京东硅谷研发中心 首席科学家 吴凌飞博士与腾讯大数据 AI平台总监 陶阳宇博士领衔参与,既包括前沿的学术分享…

召回 粗排 精排,如何各司其职?

文 | 水哥源 | 知乎saying1.AB测试几乎是系统改进的不二法则,算法做AB,开发做AB,产品做AB,运营更要做AB2.召回有点像一个甩锅侠,我不管我给的准不准,我就管我把潜在的能投的都吃进来就行3.其他环节想要提升…

LeetCode 558. 四叉树交集(递归)

1. 题目 四叉树是一种树数据,其中每个结点恰好有四个子结点:topLeft、topRight、bottomLeft 和 bottomRight。四叉树通常被用来划分一个二维空间,递归地将其细分为四个象限或区域。 我们希望在四叉树中存储 True/False 信息。四叉树用来表示…

Online Learning算法理论与实践

背景 Online Learning是工业界比较常用的机器学习算法,在很多场景下都能有很好的效果。本文主要介绍Online Learning的基本原理和两种常用的Online Learning算法:FTRL(Follow The Regularized Leader)[1]和BPR(Bayesia…

在斯坦福,做 Manning 的 phd 要有多强?

文 | 付瑶编 | 小轶博士的毕业论文是我们博士学位教育重要的一环,不仅仅是获得学位的最后一个难关,也是读博期间工作的总结展现。那么一个优秀的博士在读博期间会做出多少成果?ta 的博士论文又长什么样?今天,让我们打开…