Prompt tuning新工作,五个参数解决下游任务 fine-tuning

ec3785c058fa85f7e79d84ce7592180d.png

文 | 小伟
编 | 小轶

91abb9cf76c14fc07c5f52303da00dea.png前言4e7929f11f3c26a822f13babd91d1348.png

自从Google石破天惊地发布Bert以来,NLP就进入了预训练语言模型的时代。众所周知,我们可以用预训练语言模型来学习各种各样的任务,即使它们的特征空间有比较大的差异。那么预训练语言模型为什么会有这种泛化能力呢?或者说预训练阶段学习到的通用表示为什么可以很容易地适应广泛的下游NLP任务呢?

今天介绍的这篇文章从近来大火的 prompt tuning 的角度出发, 对这个问题进行了初步的探索。它经验性地发现:预训练模型在各类下游任务上泛化的过程其实就是在优化各类任务的公共低维本征子空间(common low-dimensional intrinsic task subspace)中非常少量的几个自由参数。为了证明这一观点,作者在100多个 few-shot 任务上进行了实验,发现仅仅优化子空间中的 5个自由参数,就可以获得 full prompt tuning 87% 的性能。

至于,何为“任务的公共低维本征子空间”?作者又是如何论证得到上述结论的?在下文中我们将为大家仔细解读。

论文标题:
Exploring Low-dimensional Intrinsic Task Subspace via Prompt Tuning

论文链接:
https://arxiv.org/pdf/2110.07867.pdf

d01d4116b0ee4f5b8fd0c49ce434b04d.png概览615dabc7e9583c8da337a80761d02b70.png

本文对任务低维本征子空间的探索是基于 prompt tuning, 而不是fine-tuning。原因是预训练模型的参数实在是太多了,很难找到这么多参数的低维本征子空间。作者基于之前的工作提出了一个基本的假设: 预训练模型在不同下游任务上学习的过程,可以被重新参数化(reparameterized)为在同一个低维本征子空间上的优化过程。如下图所示,模型在不同的任务上学习的参数虽然不同,但这些参数共享了同一个低维本征子空间。

db9d4ec80807bc14b4aa6a3685b51503.png

基于这一假设,作者提出了探索公共低维本征子空间的方法: intrinsic prompt tuning (IPT)

IPT由两个阶段组成:

  • Multi-task Subspace Finding (MSF):寻找多个任务的公共子空间,这是一个低维的、更为本征的一个空间

  • Intrinsic Subspace Tuning (IST):在找到的公共本征子空间上进行模型优化

下图展示了 IPT 与 fine-tuning 和 prompt tuning 的对比。

5d6889386d1b60e5ba07ade3babefadb.png

下面我们具体来了解一下IPT的两个阶段

7414fe323bbed68cf38453f2fb33c71e.pngIPT0819916ab362eab7a388a8ad4ec6885b.png

作者使用 intrinsic prompt tuning (IPT) 来验证本文的基本假设: 预训练模型对多个不同下游任务的学习可以被重新参数化为在同一个低维本征子空间上的优化

第一个阶段是 multi-task subspace finding (MSF)

1. 寻找公共本征子空间(MSF)

MSF阶段旨在通过对多个任务进行学习,来找到公共的低维本征子空间。如上图所示,本质上就是在学习一个自编码器。

我们用 来代表自编码器的Encoder部分(上图中处于下方的梯形),用 来代表自编码器的Decoder部分(上图中处于上方的梯形),那么自编码器会先用把Prompt参数映射为一个低维(维)的向量(向量所在的维空间就是我们想要的低维本征子空间),然后再用把该低维向量重新映射回原始的prompt空间,得到 这样我们就可以使用 和 的距离来计算自编码器的重建loss ,形式化表述就是:

另外,使用自编码器来学习公共低维本征子空间的最终目的还是为了解决多个任务,所以作者引入了面向任务的语言模型loss 来提供任务相关的监督(例如图中模型生成的结果"positive"和正确标签之间的交叉熵)。那么MSF阶段最终的loss就是:

其中 代表 和 的参数,这也是我们在MSF阶段要学习的参数。

2. 本征子空间优化(IST)

在MSF阶段中,我们通过对多个任务的学习找到了维的公共本征子空间,然后就进入了第二个阶段IST。在这一阶段中,我们想评价我们在MSF阶段中找到的低维本征子空间是不是能够很好的泛化到 (a) MSF阶段训练过的任务的新数据,以及 (b) MSF阶段没有训练过的任务。如果该低维本征子空间在这两种情况下都有比较好的泛化性能的话,那么在我们在一定程度上就成功地找到了想要的本征子空间。

在本阶段中,如上图 所示, 我们只保留自编码器的Decoder部分并冻结它的参数。对于每个测试任务,我们只微调本征子空间中的个自由参数 , 会将解码回原始的prompt空间中来计算loss:

effaecb4172f36c278be7e869bc09ec8.png实验5aef2f62bcbc7debcd1ce596ffe31083.png

作者使用了120个few-shot任务来进行实验,并进行了三种不同的训练-测试任务划分

  • random: 随机选择100个任务作为训练任务,其余20个任务作为测试任务

  • non-cls: 随机选择非分类任务中的35作为训练任务,其余所有任务作为测试任务

  • cls: 随机选择分类任务中的35个作为训练任务,其余所有任务作为测试任务

同时,对每一种任务划分,作者进行了5种不同的实验

  • : 在MSF阶段,直接使用学习到的低维本征子空间来评估训练任务在训练数据上的性能

  • : 在MSF阶段,直接使用学习到的低维本征子空间来评估测试任务(0-shot)的泛化性能

  • : 在IST阶段,微调学习到的低维本征子空间来评估训练任务在训练数据上的性能

  • : 在IST阶段,微调学习到的低维本征子空间来评估训练任务在新数据上的泛化性能

  • : 在IST阶段,微调学习到的低维本征子空间来评估测试任务的泛化性能

0ec3a40c1d01b148a15767b1cbb2acd9.png

整体的实验结果如上图所示,作者通过分析不同实验的结果,得出了一些比较重要的结论:

在random划分中,仅仅微调低维本征子空间中的5个自由参数,就可以分别获得full prompt tuning 87%(训练过的任务,不同训练数据)以及65%(未训练过的任务)的性能,这证明我们在MSF阶段中找到的低维本征子空间是比较有效的。但从另一个方面来讲,使用低维本征子空间无法获得和full prompt tuning相当的性能,所以我们不能直接得出预训练模型对多个任务的学习可以被重新参数化为在完全相同的子空间中的优化的结论。

训练-测试任务的划分会对结果有很大的影响。比如在cls划分中,训练时找到的本征子空间可以在分类的测试任务上有比较合理的表现,但在非分类的测试任务上表现很差。

随着MSF阶段中训练任务数量的增加,找到的本征子空间的泛化能力会有所提高。这反映了增加MSF阶段中训练任务的覆盖范围和多样性可以帮助IPT找到更通用的本征子空间。

6f8f6475b605ad647372941c66810406.png结论23d8ebd1335b0c76fa069a37725216a5.png

本文设计了IPT框架来验证提出的假设: 预训练模型对多个不同下游任务的学习可以被重新参数化为在同一个低维本征子空间上的优化。详尽的实验为假设提供了一定的积极证据,也帮助大家对如何更高效地使用预训练语言模型有了更好的了解。

3ce6a610b609b2dea3dd414303e37d32.png思考a27caa902a364e6dfbab419a0934f332.png

虽然文章中的实验结果不能直接验证“预训练模型对多个任务的学习可以被重新参数化为在完全相同的子空间中的优化”这一假设是完全正确的,但起码它证明了各种任务重参数化后的低维子空间是有比较大的交集的,而且我们可以通过MSF来找到这个交集

感觉接下来的工作应该是设计更好的框架来验证这个公共的低维本征子空间是不是真的存在;以及如果真的存在,怎么更好的提高它的泛化性能。PS: 如果真的存在这样的跨任务低维本征子空间,是不是意味着彻底不需要fine-tuning了呢?

9ce0af68eb57d5a686c527eafd66e505.png后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

06374b275842b6b5365aa399430dccac.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/477821.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

会议交流 | 如何将图谱实体与关系更好的向量化,并基于推理扩充知识边界?——DataFun Summit2022知识图谱在线峰会...

背景介绍知识图谱是对人类先验知识的概括,具有重要的学术价值和广泛的应用前景。在深度学习广泛应用环境下,知识图谱的表示学习通过将图谱实体和关系向量化,便于利用深度学习技术实现异质信息融合;同时,基于这种图谱表…

真正的高阶特征交叉:xDeepFM与DCN-V2

文 | 水哥源 | 知乎Saying1. xDeepFM和DCN-V2是真正的高阶交叉,和前面讲的High Order Factorization Machine(HOFM)又有着千丝万缕的联系。某种简化下,都能退化为HOFM的形式2. 如图3. 推荐模型迭代的时候要平衡涨点和复杂度的关系…

学术会议 | 中国杭州举办——第21届国际语义网大会​ISWC2022 Call for Papers

中国杭州举办!ISWC2022 Call for Papers.ISWC(International Semantic Web Conference)是语义网和知识图谱领域的国际顶级学术会议,2022年10月23-27日,ISWC将在中国杭州举行,通过线上线下结合的方式,汇聚全世界相关的科…

LeetCode 82. 删除排序链表中的重复元素 II(链表)

1. 题目 给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字。 示例 1: 输入: 1->2->3->3->4->4->5 输出: 1->2->5示例 2: 输入: 1->1->1->2->3 输出: 2->3来源:力…

从 ACL’22 投稿情况,速览当下 NLP 研究热点!

文 | Yimin_饭煲编 | 小轶卖萌屋的作者们,最近可真是忙秃了头~,不仅要苦哈哈地赶 ACL 2022 提前了两个月的Deadline,还要尽心尽力为读者们提供高质量的内容。如果大家心疼卖萌屋的作者们的话,还请多多一键三连:)ACL2022 全部转向了…

开源开放 | DeepKE发布新版本:支持低资源、长篇章、多任务的图谱抽取开源框架(浙江大学)...

OpenKG地址:http://openkg.cn/tool/deepkeGitHub地址:https://github.com/zjunlp/deepkeGitee地址:https://gitee.com/openkg/deepkeDeepKE网站:http://deepke.zjukg.org/CN/index.html开放许可协议:GPL 3.0贡献者&…

LeetCode 478. 在圆内随机生成点(概率)

1. 题目 给定圆的半径和圆心的 x、y 坐标,写一个在圆中产生均匀随机点的函数 randPoint 。 说明: 输入值和输出值都将是浮点数。圆的半径和圆心的 x、y 坐标将作为参数传递给类的构造函数。圆周上的点也认为是在圆中。randPoint 返回一个包含随机点的x坐标和y坐标…

11月AI大事件回顾:GPT3开放使用/女娲视觉大模型/AE文艺复兴/...

编 | iven感谢提供本期内容的 ZenMoore、 jxyxiangyu、付瑶大家好~ 11月的新闻速报来啦!上个月不知道大家有没有忙着写文章,反正小编是这样的:好啦,让我们快来回顾上个月的 AI 大新闻吧!学术进展何恺明 Mas…

开源开放 | 开源立体化漏洞情报知识图谱(四维创智)

OpenKG地址:http://openkg.cn/dataset/vuln-sprocket开放许可协议:CC BY-SA 4.0 (署名相似共享)贡献者:四维创智(李德斌,孙基栩,鲍晨阳)1. 前言随着时间的推移&#xff0…

LeetCode 515. 在每个树行中找最大值(层序遍历)

1. 题目 您需要在二叉树的每一行中找到最大的值。 示例: 输入: 1/ \3 2/ \ \ 5 3 9 输出: [1, 3, 9]来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row 著作…

GBDT是如何成为推荐系统顶级工具人的?

文 | 水哥源 | 知乎Saying1. 集成学习的ensemble注意一定要读作昂三姆包而不是印三姆包,一天一个算法工程师装x小技巧2. 区别bagging和boosting的准则是,先训练的模型对于后训练的模型是否有影响3. GBDT中,B(boosting)…

会议交流 | 如何提升推荐系统的可解释性?——DataFunSummit2022知识图谱在线峰会...

背景介绍知识图谱及特征学习结合智能推荐,可解决数据稀疏性及冷启动问题,更好的提升推荐决策场的准确性、多样性及可解释性,进而提升各个场景的推荐决策效率和体验。3月12日13:30-16:50,在DataFunSummit2022:知识图谱在…

LeetCode 143. 重排链表(链表反转+快慢指针)

1. 题目 给定一个单链表 L:L0→L1→…→Ln-1→Ln , 将其重新排列后变为: L0→Ln→L1→Ln-1→L2→Ln-2→… 你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。 示例 1: 给定链表 1->2->3->4, 重新排列为…

论文浅尝 | 采用成对编码的图卷积网络用于知识图谱补全

笔记整理:姚祯,浙江大学在读硕士,研究方向为知识图谱表示学习,图神经网络。论文引用:Liu S, Grau B, Horrocks I, et al. INDIGO: GNN-based inductive knowledge graph completion using pair-wise encoding[J]. Adva…

调研了下 AI 作曲,顺便做了期视频...快进来听歌!

文 | 白鹡鸰编 | 小轶视频 | 白鹡鸰嗨,大家好!这里是卖萌屋,我是白鹡鸰。今天和大家聊聊人工智能作曲。人工智能在音乐领域的应用已经非常常见了,像听歌识曲、曲风分类、自动扒谱等等,而 利用机器来替代人类作曲 &…

LeetCode 1275. 找出井字棋的获胜者(位运算)

1. 题目 A 和 B 在一个 3 x 3 的网格上玩井字棋。 井字棋游戏的规则如下: 玩家轮流将棋子放在空方格 (" ") 上。第一个玩家 A 总是用 “X” 作为棋子,而第二个玩家 B 总是用 “O” 作为棋子。“X” 和 “O” 只能放在空方格中,而…

论文浅尝 | DSKReG:基于关系GNN的推荐知识图谱可微抽样

笔记整理:李爽,天津大学硕士链接:https://dl.acm.org/doi/pdf/10.1145/3459637.3482092动机在信息爆炸的时代,推荐系统被广泛研究和应用,以发现用户的偏好信息。RS在冷启动时性能较差,如果将知识图谱(Knowl…

数据开放平台的配置管理

背景 美团是数据驱动的技术公司, 非常重视使用数据的效率。为了达到这个目标,我们将数据以开放平台的形式开放给需求方。例如,帮助需求方开发报表的报表开放平台,帮助需求方获取数据的自助查询平台,让需求方参与数据建…

LeetCode 1271. 十六进制魔术数字(进制转换)

1. 题目 你有一个十进制数字,请按照此规则将它变成「十六进制魔术数字」:首先将它变成字母大写的十六进制字符串,然后将所有的数字 0 变成字母 O ,将数字 1 变成字母 I 。 如果一个数字在转换后只包含 {“A”, “B”, “C”, “…

评测任务征集 | 全国知识图谱与语义计算大会(CCKS 2022)

评测任务征集全国知识图谱与语义计算大会(CCKS 2022)2022年8月25-28日,秦皇岛http://sigkg.cn/ccks2022/全国知识图谱与语义计算大会(CCKS: China Conference on Knowledge Graph and SemanticComputing)由中国中文信息…