1. 题目
给定一个正整数 N,试求有多少组连续正整数满足所有数字之和为 N?
示例 1:
输入: 5
输出: 2
解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。示例 2:
输入: 9
输出: 3
解释: 9 = 9 = 4 + 5 = 2 + 3 + 4示例 3:
输入: 15
输出: 4
解释: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
说明: 1 <= N <= 10 ^ 9
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/consecutive-numbers-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
设长度为n,首项为a
则 a∗n+n∗(n−1)/2=Na*n+n*(n-1)/2 = Na∗n+n∗(n−1)/2=N
a=2N−n(n−1)2na = \frac{2N-n(n-1)}{2n}a=2n2N−n(n−1), 且分子需要大于0
n2+(2a−1)n=2Nn^2+(2a-1)n=2Nn2+(2a−1)n=2N, 则 n 最大取 2N\sqrt{2N}2N
class Solution {
public:int consecutiveNumbersSum(int N) {//a0 = (2*N-n*(n-1))/(2*n) , n为长度int M = ceil(sqrt(2*N)), count = 0, up;for(int n = 1; n <= M; ++n){up = (N<<1)-n*(n-1);if(up > 0 && (up%(n<<1) == 0))++count;}return count;}
};