【Elasticsearch】DSL查询文档

目录

1.DSL查询文档

1.1.DSL查询分类

1.2.全文检索查询

1.2.1.使用场景

1.2.2.基本语法

1.2.3.示例

1.2.4.总结

1.3.精准查询

1.3.1.term查询

1.3.2.range查询

1.3.3.总结

1.4.地理坐标查询

1.4.1.矩形范围查询

1.4.2.附近查询

1.5.复合查询

1.5.1.相关性算分

1.5.2.算分函数查询

1)语法说明

2)示例

3)小结

1.5.3.布尔查询

1)语法示例:

2)示例

3)小结

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query

    • multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids

    • range

    • term

  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance

    • geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool

    • function_score

查询的语法基本一致:

GET /indexName/_search
{"query": {"查询类型": {"查询条件": "条件值"}}
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

// 查询所有
GET /indexName/_search
{"query": {"match_all": {}}
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条

  • 根据词条去倒排索引库中匹配,得到文档id

  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索

  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{"query": {"match": {"FIELD": "TEXT"}}
}

mulit_match语法如下:

GET /indexName/_search
{"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}}
}

1.2.3.示例

match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询

  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询

  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{"query": {"term": {"FIELD": {"value": "VALUE"}}}
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{"query": {"range": {"FIELD": {"gte": 10, // 这里的gte代表大于等于,gt则代表大于"lte": 20 // lte代表小于等于,lt则代表小于}}}
}

示例:

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段

  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.8] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店

  • 滴滴:搜索我附近的出租车

  • 微信:搜索我附近的人

附近的酒店:

附近的车:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{"query": {"geo_bounding_box": {"FIELD": {"top_left": { // 左上点"lat": 31.1,"lon": 121.5},"bottom_right": { // 右下点"lat": 30.9,"lon": 121.7}}}}
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{"query": {"geo_distance": {"distance": "15km", // 半径"FIELD": "31.21,121.5" // 圆心}}
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[{"_score" : 17.850193,"_source" : {"name" : "虹桥如家酒店真不错",}},{"_score" : 12.259849,"_source" : {"name" : "外滩如家酒店真不错",}},{"_score" : 11.91091,"_source" : {"name" : "迪士尼如家酒店真不错",}}
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法

  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化

  • 过滤条件:brand = "如家"

  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight

  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{"query": {"function_score": {"query": {  .... }, // 原始查询,可以是任意条件"functions": [ // 算分函数{"filter": { // 满足的条件,品牌必须是如家"term": {"brand": "如家"}},"weight": 2 // 算分权重为2}],"boost_mode": "sum" // 加权模式,求和}}
}        

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分

  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

GET /hotel/_search
{"query": {"bool": {"must": [{"term": {"city": "上海" }}],"should": [{"term": {"brand": "皇冠假日" }},{"term": {"brand": "华美达" }}],"must_not": [{ "range": { "price": { "lte": 500 } }}],"filter": [{ "range": {"score": { "gte": 45 } }}]}}
}

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中

  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中

  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”

  • should:选择性匹配的条件,可以理解为“或”

  • must_not:必须不匹配的条件,不参与打分

  • filter:必须匹配的条件,不参与打分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/476.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Set与Map的使用 + 二叉搜索树与哈希桶的大白话讲解和图解+完整代码实现(详细注释)

文章目录 前言一、Set与Map概念及场景模型纯Key模型Key-Value模型 Map 的使用Set 的使用 二、二叉搜索树什么是二叉搜索树代码实现二叉搜索树查找操作插入操作删除操作(难点)cur这个节点没有左子树(cur.left null)cur这个节点没有右子树(cur.right null)cur这个节点没有左右子…

PyTorch深度学习实战(5)——计算机视觉

PyTorch深度学习实战(5)——计算机视觉 0. 前言1. 图像表示2. 将图像转换为结构化数组2.1 灰度图像表示2.2 彩色图像表示 3 利用神经网络进行图像分析的优势小结系列链接 0. 前言 计算机视觉是指通过计算机系统对图像和视频进行处理和分析,利…

【Python】正则表达式语法入门

目录 正则表达式 1、点:匹配所有字符 2、星号:重复匹配任意次 3、加号:重复匹配多次 4、花括号:匹配指定次数 5、贪婪模式和非贪婪模式 6、反斜杠:对元字符的转义 7、方括号:匹配几个字符之一 8、…

异地使用PLSQL远程连接访问Oracle数据库【内网穿透】

文章目录 前言1. 数据库搭建2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射 3. 公网远程访问4. 配置固定TCP端口地址4.1 保留一个固定的公网TCP端口地址4.2 配置固定公网TCP端口地址4.3 测试使用固定TCP端口地址远程Oracle 转载自cpolar极点云文章:公网远程连接…

cjson的内存泄漏案例

1、当我们使用下面这些创建json对象时,需要用cJSON_Delete();释放,(当然,释放父JSON对象后,子JSON对象也会被释放) 2、多次释放同一内存空间 在recv_write_property函数中的data,在Equipment_re…

Html基础知识学习——兼容问题与解决方法(十六)

文章目录 1.计算一定要精确,不要让内容的宽高超出我们设置的宽高,在IE6下内容会撑开设置好的宽高2.元素浮动,宽度需要内容撑开,就给里面的块元素都加浮动3.在ie6.ie7下元素要浮动并在同一行 就给这些元素都加浮动4.注意标签嵌套规…

【玩转Linux操作】Linux进程(进程基本介绍,父子进程,终止进程,进程树)

🎊专栏【玩转Linux操作】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【Counting Stars 】 欢迎并且感谢大家指出小吉的问题🥰 文章目录 🍔进程的基本介绍🍔显示系统执行的进程⭐…

微服务 云原生:K8S 核心组件

参考 Kubernetes 官方文档,简要概述 Kubernetes 中的核心组件用途及部分原理。 一个 K8S 集群,可以分为两个部分: 控制平面(Control Plane)。它是一套管理系统,专门来管理集群节点和服务,为集群做出全局决策&#xff…

使用 @Autowired 为什么会被 IDEA 警告,应该怎么修改最佳?

# 问题原因 关于这个问题,其实答案相对统一,实际上用大白话说起来也容易理解。 1.初始化问题 先看一下Java初始化类的顺序:父类的静态字段 > 父类静态代码块 > 子类静态字段 > 子类静态代码块 > 父类成员变量 > 父类构造代码块…

Linux系统使用(超详细)

目录 Linux操作系统简介 Linux和windows区别 Linux常见命令 Linux目录结构 Linux命令提示符 常用命令 ls cd pwd touch cat echo mkdir rm cp mv vim vim的基本使用 grep netstat Linux面试题 Linux操作系统简介 Linux操作系统是和windows操作系统是并列…

数组与指针

博客内容:数组与指针 文章目录 一、 数组?指针?1.区别与联系大小赋值存储位置 二、指针数组、数组指针?二维数组和二级指针&数组名与数组的区别总结 一、 数组?指针? 数组 相同类型数据的集合 指针 指…

使用SpringBoot+React搭建一个Excel报表平台

摘要:本文由葡萄城技术团队于CSDN原创并首发。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 Excel报表平台是一款功能强大、操作简单的系统平台,可以帮助用户上传…

【C++/嵌入式笔试面试八股】二、24.TCP三次握手四次挥手 | TCP可靠性

TCP三次握手四次挥手 64.TCP头部中有哪些信息?❤️ TCP数据报格式(左图) UDP数据报格式也放这(右图),不具体解释了。 结合三次握手四次挥手来看 端口: 区分应用层的不同应用进程 扩展:应用程序的端口号和应用程序所在主机的 IP 地址统称为 socket(套接字),IP:端口…

如何在 Windows 中免费合并 PDF 文件 [在线和离线]

PDF是一种广泛使用的文件格式,具有兼容性好、安全性高、易于打印、方便浏览等众多优点。在工作和学习过程中,经常需要将同一类型的PDF文件合并起来,以方便传输和查看,使得合并PDF文件成为一种重要的数据整合方法。 如果您想知道如…

1、Kubernetes 概述和架构

目录 一、基本介绍 二、kubernetes功能和架构 2.1、 概述 2.2 、功能 (1)自动装箱 (2)自我修复(自愈能力) (3)水平扩展 (4)服务发现 (5)滚动更新 &a…

Linux进程理解【环境变量】

Linux进程理解【环境变量】 提到环境变量,大家可能有些陌生,如果编写过Java就知道,编写Java需要提前安装JDK,这个操作就是配置Java的编码环境,在Linux中当然也少不了环境变量,下面我们就一起来看看 文章目…

Node.js 版本管理工具 n 使用指南

Node.js 版本更新很快,目前 node v20.x 已经发布,我们在使用时避免不了会需要切换不同的 Node.js 的版本来使用不同版本的特性。 所以就出现了像 windows 上的 nvm,MacOS 上的 n 工具,本文就介绍一下如何使用 n 管理 Node.js 的版…

Django_haystack全文搜索

haystack是全文搜索的框架,支持whoosh、solr、Xapian、Elasticsearc四种全文检索引擎,点击查看官方网站。 whoosh是用纯Python编写的全文搜索引擎,虽然性能比不上sphinx、xapian、Elasticsearc等,但是无二进制包,程序…

LiveNVR监控流媒体Onvif/RTSP功能-安全控制HTTP接口鉴权开启禁止游客访问开启后401 Unauthorized如何播放调用接口

LiveNVR安全控制HTTP接口鉴权开启禁止游客访问开启后401 Unauthorized如何播放调用接口? 1、安全控制1.1、接口鉴权1.2、禁止游客访问 2、401 Unauthorized2.1、携带token调用接口2.1.1、获取鉴权token2.1.2、调用其它接口2.1.2.1、携带 CookieToken2.1.2.2、携带 U…

使用Feign进行微服务之间的接口调用:Spring Cloud Alibaba中的声明式服务调用

一、Feign介绍 Feign是一个声明式的HTTP客户端框架,用于简化微服务架构中服务之间的通信。它是Spring Cloud框架的一部分,旨在提供一种优雅且易于使用的方式来定义和调用HTTP请求。 Feign的设计目标是让服务之间的通信变得更加简单和直观。通常情况下&am…