文章目录
- 1. 谷歌Colab设置
- 2. 编写代码
- 3. flask 微服务
- 4. 打包到容器
- 5. 容器托管
参考 基于深度学习的自然语言处理
使用这篇文章的数据(情感分类)进行学习。
1. 谷歌Colab设置
Colab 地址
-
新建笔记本
-
设置
-
选择 GPU/TPU 加速计算
-
测试 GPU 是否分配
import tensorflow as tf
tf.test.gpu_device_name()
输出:
/device:GPU:0
- 上传数据至谷歌云硬盘,并在Colab中加载
- 解压数据
2. 编写代码
import numpy as np
import pandas as pddata = pd.read_csv("yelp_labelled.txt", sep='\t', names=['sentence', 'label'])data.head() # 1000条数据# 数据 X 和 标签 y
sentence = data['sentence'].values
label = data['label'].values# 训练集 测试集拆分
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(sentence, label, test_size=0.2, random_state=1)#%%max_features = 2000# 文本向量化
from keras.preprocessing.text import Tokenizer
tokenizer = Tokenizer(num_words=max_features)
tokenizer.fit_on_texts(X_train) # 训练tokenizer
X_train = tokenizer.texts_to_sequences(X_train) # 转成 [[ids...],[ids...],...]
X_test = tokenizer.texts_to_sequences(X_test)
vocab_size = len(tokenizer.word_index)+1 # +1 是因为index 0, 0 不对应任何词,用来padmaxlen = 50
# pad 保证每个句子的长度相等
from keras.preprocessing.sequence import pad_sequences
X_train = pad_sequences(X_train, maxlen=maxlen, padding='post')
# post 尾部补0,pre 前部补0
X_test = pad_sequences(X_test, maxlen=maxlen, padding='post')#%%embed_dim = 256
hidden_units = 64from keras.models import Model, Sequential
from keras.layers import Dense, LSTM, Embedding, Bidirectional, Dropout
model = Sequential()
model.add(Embedding(input_dim=max_features,output_dim=embed_dim,input_length=maxlen))
model.add(Bidirectional(LSTM(hidden_units)))
model.add(Dropout(0.3))
model.add(Dense(1, activation='sigmoid')) # 二分类sigmoid, 多分类 softmaxmodel.compile(optimizer='adam', loss='binary_crossentropy',metrics=['accuracy'])
model.summary()
from keras.utils import plot_model
plot_model(model, show_shapes=True, to_file='model.jpg') # 绘制模型结构到文件#%%history = model.fit(X_train,y_train,batch_size=64,epochs=100,verbose=2,validation_split=0.1)
# verbose 是否显示日志信息,0不显示,1显示进度条,2不显示进度条
loss, accuracy = model.evaluate(X_train, y_train, verbose=1)
print("训练集:loss {0:.3f}, 准确率:{1:.3f}".format(loss, accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose=1)
print("测试集:loss {0:.3f}, 准确率:{1:.3f}".format(loss, accuracy))# 绘制训练曲线
from matplotlib import pyplot as plt
import pandas as pd
his = pd.DataFrame(history.history)
loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']plt.plot(loss, label='train Loss')
plt.plot(val_loss, label='valid Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.grid()
plt.show()plt.plot(acc, label='train Acc')
plt.plot(val_acc, label='valid Acc')
plt.title('Training and Validation Acc')
plt.legend()
plt.grid()
plt.show()#%%model.save('trained_model.h5')import pickle
with open('trained_tokenizer.pkl','wb') as f:pickle.dump(tokenizer, f)# 下载到本地
from google.colab import files
files.download('trained_model.h5')
files.download('trained_tokenizer.pkl')
3. flask 微服务
- 以下内容不懂,抄一遍
编写 app.py
# Flask
import pickle
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
def load_var():global model, tokenizermodel = load_model('trained_model.h5')model.make_predict_function()with open('trained_tokenizer.pkl','rb') as f:tokenizer = pickle.load(f)maxlen = 50
def process_txt(text):x = tokenizer.texts_to_sequences(text)x = pad_sequences(x, maxlen=maxlen, padding='post')return x#%%from flask import Flask, request, jsonify
app = Flask(__name__)@app.route('/')
def home_routine():return "hello NLP!"#%%@app.route("/prediction",methods=['POST'])
def get_prediction():if request.method == 'POST':data = request.get_json()x = process_txt(data)prob = model.predict(x)pred = np.argmax(prob, axis=-1)return str(pred)#%%if __name__ == "__main__":load_var()app.run(debug=True)# 上线阶段应该为 app.run(host=0.0.0.0, port=80)
- 运行
python app.py
- windows cmd 输入:
Invoke-WebRequest -Uri 127.0.0.1:5000/prediction -ContentType 'application/json' -Body '["The book was very poor", "Very nice", "bad, oh no", "i love you"]' -Method 'POST'
返回预测结果:
4. 打包到容器
- 后序需要用 Docker 将 应用程序包装到容器中
5. 容器托管
- 容器托管到网络服务,如 AWS EC2 实例