卷积神经网络——上篇【深度学习】【PyTorch】

文章目录

  • 5、卷积神经网络
    • 5.1、卷积
      • 5.1.1、理论部分
      • 5.1.2、代码实现
      • 5.1.3、边缘检测
    • 5.2、填充和步幅
      • 5.2.1、理论部分
      • 5.2.2、代码实现
    • 5.3、多输入多输出通道
      • 5.3.1、理论部分
      • 5.3.2、代码实现
    • 5.4、池化层 | 汇聚层
      • 5.4.1、理论部分
      • 5.4.2、代码实现

5、卷积神经网络

5.1、卷积

5.1.1、理论部分

全连接层后,卷积层出现的意义?

一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。

(convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据上各类成本,效果,可行性普遍优于全连接层。

卷积层做了什么?

将输入和核矩阵进行互相关运算,加上偏移后得到输出。

图片中找模式的原则

  • 平移不变性
  • 局部性

对全连接层使用如上原则得到卷积层。

(详细待补充)

二维卷积层

在这里插入图片描述

Y = X ★ W + b Y = X ★ W + b Y=XW+b

  • 输入 X X X n h × n w n_h × n_w nh×nw

    图中,h:高、w:宽、输入大小 n = 3。

  • W W W k h × k w k_h × k_w kh×kw

    图中,卷积核大小 k = 2,超参数

  • 偏差 b∈ R

  • 输出 Y Y Y ( n h − k h + 1 ) × ( n w − k w + 1 ) ( n_h - k_h + 1)×(n_w - k_w + 1) nhkh+1×nwkw+1

    图中 (3-2 +1)*(3-2 +1) = 4 ,计算的是 Y 的形状。

  • ★:二维交叉操作子 | 外积

  • W 和 b是可学习的参数

卷积效果举例

在这里插入图片描述

5.1.2、代码实现

(1)实现互相关运算


卷积运算 ≠ 互相关运算

import torch
from torch import nn
from d2l import torch as d2ldef corr2d(X, K):  #@save"""计算二维互相关运算"""h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):#点积求和Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

验证运算结果

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

result:

tensor([[19., 25.],[37., 43.]])

实现二维卷积层

class Conv2D(nn.Module):def __init__(self,kernel_size):super().__init__()self.weight =nn.Parameter(torch.rand(kernel_size))self.bias = nn.Parameter(torch.zeros(1))def forward(sekf, x):return 	corr2d(x,self.weight) + self.bias

(2)学习由X生成Y卷积核


#一个输入通道、一个输出通道,不使用偏置
conv2d = nn.Conv2d(1,1,kernel_size=(1,2),bias =False)X = X.reshape((1,1,6,8))
Y = Y.reshape((1,1,6,7))for i in range(10):Y_hat = conv2d(X)l = (Y_hat - Y) **2conv2d.zero_grad()l.sum().backward()conv2d.weight.data[:] -=3e-2 * conv2d.weight.gradif(i + 1)% 2 == 0:print(f'batch{i + 1}, loss {l.sum():.3f}')

所学卷积核权重

conv2d.weight.data.reshape((1,2))
tensor([[ 1.0084, -0.9816]])

5.1.3、边缘检测

利用卷积层检测 图像中的不同边缘

输入

X = torch.ones((6,8))
X[:, 2:6]  =0
X
tensor([[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.],[1., 1., 0., 0., 0., 0., 1., 1.]])

核矩阵

K = torch.tensor([[1,-1]])

输出

Y  = corr2d(X,K)
Y
tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.],[ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

只能检测垂直边缘

Y  = corr2d(X.t(),K)
Y
tensor([[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]])

将核矩阵一起转置

Y  = corr2d(X.t(),K.t())
Y

水平边缘检测可行。

tensor([[ 0.,  0.,  0.,  0.,  0.,  0.],[ 1.,  1.,  1.,  1.,  1.,  1.],[ 0.,  0.,  0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.,  0.,  0.],[-1., -1., -1., -1., -1., -1.],[ 0.,  0.,  0.,  0.,  0.,  0.]])

5.2、填充和步幅

5.2.1、理论部分

填充操作

更大的卷积核可以更快地减小输出大小。

如果不想结果太小,也可以通过填充实现输出更大尺寸的X,实现控制输出形状的减少量。

在这里插入图片描述

填充 p h p_h ph p w p_w pw列,输出形状:

( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) (n_h -k_h +p_h +1)×(n_w - k_w + p_w +1) nhkh+ph+1×nwkw+pw+1

通常取 p h = k h − 1 , p w = k w − 1 p_h = k_h -1, \ \ \ p_w =k_w -1 ph=kh1,   pw=kw1

  • k h k_h kh奇数:上下两侧填充 p h / 2 p_h/2 ph/2
  • k h k_h kh偶数:上侧填充 ⌈ p h / 2 ⌉ ⌈p_h/2⌉ ph/2下侧填充 ⌊ p h / 2 ⌋ ⌊p_h/2⌋ ph/2

步幅

步幅指行/列滑动步长。

设置步幅的效果?

成倍减少输出形状。

下图为高3宽2步幅示意图:

在这里插入图片描述

(图片来自 《DIVE INTO DEEP LEARNING》)

给定步幅,高度 s h s_h sh宽度 s w s_w sw,输出形状:

⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ ⌊(n_h - k_h + p_h + s_h)/s_h⌋ ×⌊(n_w - k_w + p_w + s_w)/s_w⌋ ⌊(nhkh+ph+sh)/sh×⌊(nwkw+pw+sw)/sw

如果输入高度宽度可被步幅整除,形状为:

( n h / s h ) × ( n w / s w ) (n_h / s_h)×(n_w / s_w) (nh/sh)×(nw/sw)

5.2.2、代码实现

填充、步幅是卷积层超参数

所有侧边填充一个像素

import torch
from torch import nndef comp_conv2d(conv2d, X):X = X.reshape((1,1) + X.shape)Y =conv2d(X)return Y.reshape(Y.shape[2:])conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1)
X= torch.rand(size=(8,8))
comp_conv2d(conv2d,X).shape

填充相同高度宽度

import torch
from torch import nndef comp_conv2d(conv2d, X):X = X.reshape((1,1) + X.shape)#执行一次卷积操作Y =conv2d(X)return Y.reshape(Y.shape[2:])
#padding=1 在输入数据的边界填充一行和一列的零值
conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1)
X= torch.rand(size=(8,8))
comp_conv2d(conv2d,X).shape
torch.Size([8, 8])

不同高度宽度

conv2d = nn.Conv2d(1,1,kernel_size=(5,3),padding=(2,1))
comp_conv2d(conv2d,X).shape
torch.Size([8, 8])

增设步幅,其宽高为2

conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1,stride =2)
comp_conv2d(conv2d,X).shape
torch.Size([4, 4])

成倍缩小。

5.3、多输入多输出通道

5.3.1、理论部分

彩色RGB图片,是三通道输入数据。

每个通道都有一个卷积核,结果为各通道卷积的和。

在这里插入图片描述

1×1卷积层

不识别空间,用途是融合通道。

二维卷积层(多通道)

Y = X ★ W + B Y = X ★ W + B Y=XW+B

  • 输入 X X X c i × n h × n w c_i × n_h × n_w ci×nh×nw

    c i c_i ci输入通道数、h高、w宽、输入大小 n。

  • W W W c o × c i × k h × k w c_o × c_i × k_h × k_w co×ci×kh×kw

    c o c_o co输出通道数、卷积核大小 k。其中, c o c_o co是卷积层的超参数。

  • 偏差 B B B c o × c i c_o × c_i co×ci

    一共有 c o × c i c_o × c_i co×ci个卷积核 每个卷积核都有一个偏差

  • 输出 Y Y Y c o × m h × m w c_o × m_h × m_w co×mh×mw

    m h m w m_h \ m_w mh mw大小与 填充p、核大小k有关。

  • ★:二维交叉操作子 | 外积

怎么理解每个输出通道有独立的三维卷积核?

具有三个维度:高度、宽度和通道数。

5.3.2、代码实现

(1)实现多通道互相关运算


定义多通道输入

import torch
from d2l import torch as d2l
#先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
def corr2d_multi_in(X,K):return sum(d2l.corr2d(x,k) for x,k in zip(X,K))

多通道第零维度的几何意义?
在这里插入图片描述

图中X第零维度有两组,几何上就是通道数。

X :

(tensor([[[0., 1., 2.],[3., 4., 5.],[6., 7., 8.]],[[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]]]),

定义X,K

# X 6*3
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
#K 4*2
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])X,K,corr2d_multi_in(X, K)
(tensor([[[0., 1., 2.],[3., 4., 5.],[6., 7., 8.]],[[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]]]),
tensor([[[0., 1.],[2., 3.]],[[1., 2.],[3., 4.]]]),
tensor([[ 56.,  72.],[104., 120.]]))

定义多通道输出

def corr2d_multi_in_out(X,K):# 使用 PyTorch 的 torch.stack 函数,它将一组张量沿着指定的维度(这里是维度0)进行堆叠,生成一个新的张量。return torch.stack([corr2d_multi_in(X,k) for k in K],0)
# K+1 K的每个值加一,K规模扩成了原来3倍。
K = torch.stack((K,K+1,K+2),0)
K,K.shape
(tensor([[[[0., 1.],[2., 3.]],[[1., 2.],[3., 4.]]],[[[1., 2.],[3., 4.]],[[2., 3.],[4., 5.]]],[[[2., 3.],[4., 5.]],[[3., 4.],[5., 6.]]]]),
torch.Size([3, 2, 2, 2]))

返回值那一行为什么用小k对应X,多通道输入那里不是用的大K对应X,然后第零维度展开,抽出x,k对应计算吗?

K扩了三倍,所以用小k规模和原来的K相当,因此X 对应扩充前的K,扩充后的小k。

corr2d_multi_in_out(X,K)
tensor([[[ 56.,  72.],[104., 120.]],[[ 76., 100.],[148., 172.]],[[ 96., 128.],[192., 224.]]])

(2)实现1*1卷积核


def corr2d_multi_in_out_1x1(X, K):c_i, h, w = X.shapec_o = K.shape[0]X = X.reshape((c_i, h * w))K = K.reshape((c_o, c_i))# 全连接层中的矩阵乘法Y = torch.matmul(K, X)return Y.reshape((c_o, h, w))
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
# 进行断言,验证使用 1x1 卷积操作得到的输出 Y1 与多通道卷积操作得到的输出 Y2 是否非常接近,以确保两种方法的结果一致
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6

5.4、池化层 | 汇聚层

5.4.1、理论部分

最大池化,每个窗口最强的模式信号,它针对卷积对空间位置敏感(边缘检测案例),允许输入有一定的偏移。

也有平均池化层。

特点

  • 具有填充,步幅;
  • 没有可学习的参数;
  • 输出通道 = 输入通道,一一对应。

5.4.2、代码实现

池化层向前传播

import torch
from torch import nn
from d2l import torch as d2ldef pool2d(X, pool_size, mode='max'):p_h, p_w = pool_sizeY = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):if mode == 'max':Y[i, j] = X[i: i + p_h, j: j + p_w].max()elif mode == 'avg':Y[i, j] = X[i: i + p_h, j: j + p_w].mean()return Y

验证最大池化层

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],[7., 8.]])

验证平均池化层

pool2d(X, (2,2), 'avg')
tensor([[2., 3.],[5., 6.]])

使用内置的最大池化层

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)#等价于nn.MaxPool2d((3,3), padding=(1,1), stride=(2,2))
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]]]])
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]]]])

验证多通道

汇聚层在每个输入通道上单独运算,输出通道数与输入通道数相同。

# 将两个张量 X, X + 1 进行拼接
X = torch.cat((X, X + 1), 1)
X
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]],[[ 1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.],[ 9., 10., 11., 12.],[13., 14., 15., 16.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]],[[ 6.,  8.],[14., 16.]]]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/47163.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OLED透明屏介绍:领先科技的革命性创新

OLED透明屏作为一项领先的科技创新&#xff0c;在产品设计和用户体验方面展现出了巨大的潜力。 在这篇文章中&#xff0c;尼伽将介绍OLED透明屏的定义、特点、应用领域以及未来发展趋势&#xff0c;以帮助您全面了解OLED透明屏。 一、OLED透明屏的定义与原理 1.1 定义&#x…

卷积神经网络——下篇【深度学习】【PyTorch】

文章目录 5、卷积神经网络5.10、⭐批量归一化5.10.1、理论部分5.10.2、代码部分 5.11、⭐残差网络&#xff08;ResNet&#xff09;5.11.1、理论部分5.11.2、代码部分 话题闲谈 5、卷积神经网络 5.10、⭐批量归一化 5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和…

如何进行电脑文件夹分类与整理?

本科电脑用了四年&#xff0c;毕业后发现空间很满&#xff0c;但是真正有用的东西仿佛就一点。好像是在学开发的时候&#xff0c;听到一个老师说&#xff0c;根目录不要放太多文件夹&#xff0c;不然就相当于没有根目录了。刚好研究生有了新的台式电脑&#xff0c;开始有规划的…

什么是原型(prototype)和原型链(prototype chain)?如何继承一个对象的属性和方法?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 原型&#xff08;Prototype&#xff09;和原型链&#xff08;Prototype Chain&#xff09;⭐ 原型&#xff08;Prototype&#xff09;⭐ 原型链&#xff08;Prototype Chain&#xff09;⭐ 继承属性和方法⭐ 写在最后 ⭐ 专栏简介 前端入…

使用在 Web 浏览器中运行的 VSCode 实现 ROS2 测程法

一、说明 Hadabot是软件工程师学习ROS2和机器人技术的机器人套件。我们距离Hadabot套件的测试版还有一周左右的时间。我们将在本文末尾披露有关如何注册的更多信息。 新的Hadabot套件完全支持ROS2。除了硬件套件外&#xff0c;Hadabot软件环境将主要基于Web浏览器&#xff0c;以…

Blend for Visual Studio:提升用户界面设计的专业工具

随着软件行业的迅速发展&#xff0c;用户界面设计变得越来越重要。一个好的用户界面能够吸引用户的注意力&#xff0c;提供良好的用户体验&#xff0c;并增加应用程序的成功率。在这个背景下&#xff0c;Blend for Visual Studio作为一款专业的用户界面设计工具&#xff0c;为开…

内网渗透神器CobaltStrike之权限提升(七)

Uac绕过 常见uac攻击模块 UAC-DLL UAC-DLL攻击模块允许攻击者从低权限的本地管理员账户获得更高的权限。这种攻击利用UAC的漏洞&#xff0c;将ArtifactKit生成的恶意DLL复制到需要特权的位置。 适用于Windows7和Windows8及更高版本的未修补版本 Uac-token-duplication 此攻…

为什么20位数据总线决定寻址空间是2^20B,即1MB,而不是2^20/2^3=2^17B????

升级版的说明 –升级了一下图片&#xff1b;增加了对按字节编制的默认设定的说明&#xff0c;免得引起误导&#xff1b;去掉了之前评论区有人说单位的问题。 老版链接&#xff1a; http://t.csdn.cn/pYIXD 小白的疑惑 小白刚开始学习的时候很疑惑&#xff0c;为什么20位地…

记一次由于整型参数错误导致的任意文件上传

当时误打误撞发现的&#xff0c;觉得挺奇葩的&#xff0c;记录下 一个正常的图片上传的点&#xff0c;文件类型白名单 但是比较巧的是当时刚对上面的id进行过注入测试&#xff0c;有一些遗留的测试 payload 没删&#xff0c;然后在测试上传的时候就发现.php的后缀可以上传了&a…

双亲委派机制

概念 按照类加载器的层级关系逐层进行委派&#xff0c;比如说当我们需要加载一个class文件的时候&#xff0c;首先会去把这个class文件的查询和加载委派给父加载器去执行&#xff0c;如果父加载器都无法加载&#xff0c;那么再尝试自己来加载这样一个class。 好处 安全性&…

【HCIP】生成树--STP

一、STP 1.产生背景 在星状拓扑或者树形拓扑中&#xff0c;当某个设备或者某条链路出现故障&#xff0c;就会导致数据不能正常转发&#xff0c;出现单点故障的问题。 为了防止出现单点故障&#xff0c;一般需要环形拓扑来保证链路的冗余性&#xff0c;当某条链路出现故障&…

Wlan安全——认证与加密方式(WPA/WPA2)

目录 终端认证技术 WEP认证 PSK认证 802.1x认证与MAC认证 Portal认证 数据加密技术 WEP加密 TKIP加密 CCMP加密 TKIP和CCMP生成密钥所需要的密钥信息 802.11安全标准 WEP共享密钥认证、加密工作原理 WEP共享密钥认证 WEP加解密过程 PSK认证以及生成动态密钥的工…

CentOS系统环境搭建(十四)——CentOS7.9安装elasticsearch-head

centos系统环境搭建专栏&#x1f517;点击跳转 关于node的安装请看上一篇CentOS系统环境搭建&#xff08;十三&#xff09;——CentOS7安装nvm&#xff0c;&#x1f517;点击跳转。 CentOS7.9安装elasticsearch-head 文章目录 CentOS7.9安装elasticsearch-head1.下载2.解压3.修…

【广州华锐互动】3D空间编辑器:一款简洁易用的VR/3D在线编辑工具

随着虚拟现实技术的不断发展&#xff0c;数字孪生技术的应用已经被广泛应用于产品设计和制作中&#xff0c;能充分发挥企业应用3D建模的优势&#xff0c;凸显了三维设计的价值&#xff0c;在生产阶段也能够充分发挥3D模型的作用。 如今&#xff0c;广州华锐互动开发的3D空间编辑…

线程池的实现全过程v1.0版本(手把手创建,看完必掌握!!!)

目录 线程池的实现过程 线程池的创建 添加任务队列 线程进行处理任务 线程池资源释放 线程池完整程序 线程池v1.0版本总结 线程池的实现过程 实现线程池首先要确定线程池有哪些属性 线程池中线程的数量线程池中已工作的线程数量任务队列任务队列的大小任务队列的锁 还…

Android笔记:在原生App中嵌入Flutter

首先有一个可以运行的原生项目 第一步&#xff1a;新建Flutter module Terminal进入到项目根目录&#xff0c;执行flutter create -t module ‘module名字’例如&#xff1a;flutter create -t module flutter-native 执行完毕&#xff0c;就会发现项目目录下生成了一个modu…

Android Drawable转BitmapDrawable再提取Bitmap,Kotlin

Android Drawable转BitmapDrawable再提取Bitmap&#xff0c;Kotlin <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"…

MySQL——基础——内连接

一、内连接查询语法 隐式内连接 SELECT 字段列表 FROM 表1&#xff0c;表2 WHERE 条件...; 显示内连接 SELECT 字段列表 FROM 表1 [INNER] JOIN 表2 ON 连接条件...; 内连接查询的是两张表交集的部分 二、内连接演示 1.查询每一个员工的姓名&#xff0c;及关联的部门的名称…

Linux学习之ftp安装、vsftpd安装和使用

ftp需要两个端口&#xff1a; 数据端口 命令端口 ftp有两种模式&#xff1a; 被动模式&#xff1a;建立命令连接之后&#xff0c;服务器等待客户端发起请求。 主动模式&#xff1a;建立命令连接之后&#xff0c;服务器主动向客户端发起数据连接&#xff0c;因为客户端可能有防火…

12312321312

目录 层次分析法(AHP) 基本步骤 建立层次模型 构造判断矩阵 一致性检验 求得权重 填表得结果 一点补充 详细做法补充 特征向量含义思考 一些问题 优劣解距离法(TOPSIS) 基本思想 模型步骤 数据处理 指标正向化 标准化处理 计算得分 *结果处理 熵权法 模型思…