卷积神经网络(基础篇)

说明 0、前一部分叫做Feature Extraction,后一部分叫做classification

        1、每一个卷积核它的通道数量要求和输入通道是一样的。这种卷积核的总数有多少个和你输出通道的数量是一样的。

        2、卷积(convolution)后,C(Channels)变,W(width)和H(Height)可变可不变,取决于是否padding。subsampling(或pooling)后,C不变,W和H变。

        3、卷积层:保留图像的空间信息。

       4、卷积层要求输入输出是四维张量(B,C,W,H),全连接层的输入与输出都是二维张量(B,Input_feature)。

             传送门 PyTorch的nn.Linear()详解

      5、卷积(线性变换),激活函数(非线性变换),池化;这个过程若干次后,view打平,进入全连接层~

 

 

 


1. 卷积操作

import torch
# 定义输入、输出通道
in_channels, out_channels = 5, 10
# 定义图像尺寸
width, height = 100, 100
# 定义卷积核的大小,下式表示大小为3*3的正方形,同时,卷积核的通道数与输入图像的通道数一致,均为5
kernel_size = 3
# 定义一次输入图像的数量
batch_size = 1input = torch.randn(batch_size,in_channels,width,height)# out_channels 决定了卷积核的数量, 即一共有10个3*3*5的卷积核
conv_layer = torch.nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size)
output = conv_layer(input)print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

输出:

torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])

有时,我们希望获得与原图像相同大小的卷积后的图像,这时需要属性padding,默认为0

conv_layer_with_padding = torch.nn.Conv2d(in_channels,out_channels,padding=1,kernel_size = kernel_size)
output_with_padding = conv_layer_with_padding(input)
print(output_with_padding.shape)

输出:

torch.Size([1, 10, 100, 100])

还有时,我们希望再次降低网络的大小,以降低运算量。此时引入卷积核移动步长stride的概念,默认为1

conv_layer_with_stride = torch.nn.Conv2d(in_channels,out_channels,stride=2,kernel_size=kernel_size)output_with_stride = conv_layer_with_stride(input)
print(output_with_stride.shape)

输出:

torch.Size([1, 10, 49, 49])

2. 下采样

下采样与卷积无本质区别,不同的在于目的。下采样的目的是将数据维度再次减少。
最常用的下采样手段是Max Pooling 最大池化。

input = [3,4,6,5,2,4,6,8,1,6,7,8,9,7,4,6,
]
input = torch.Tensor(input).view(1,1,4,4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
# 注意,我们将kernel_size设为2,此时stride默认也为2output = maxpooling_layer(input)
print(output)

输出:

tensor([[[[4., 8.],[9., 8.]]]])

3. 卷积神经基础代码

 

代码说明:

1、torch.nn.Conv2d(1,10,kernel_size=3,stride=2,bias=False)

 1是指输入的Channel,灰色图像是1维的;10是指输出的Channel,也可以说第一个卷积层需要10个卷积核;kernel_size=3,卷积核大小是3x3;stride=2进行卷积运算时的步长,默认为1;bias=False卷积运算是否需要偏置bias,默认为False。padding = 0,卷积操作是否补0。

2、self.fc = torch.nn.Linear(320, 10),这个320获取的方式,可以通过x = x.view(batch_size, -1)

# print(x.shape)可得到(64,320),64指的是batch,320就是指要进行全连接操作时,输入的特征维度。

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True,download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False,download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using classclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)self.pooling = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(320, 10)def forward(self, x):# flatten data from (n,1,28,28) to (n, 784)batch_size = x.size(0)x = F.relu(self.pooling(self.conv1(x)))x = F.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1)  # -1 此处自动算出的是320# print("x.shape",x.shape)x = self.fc(x)return xmodel = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, update
def train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = datainputs, target = inputs.to(device), target.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataimages, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100 * correct / total))return correct / totalif __name__ == '__main__':epoch_list = []acc_list = []for epoch in range(10):train(epoch)acc = test()epoch_list.append(epoch)acc_list.append(acc)plt.plot(epoch_list, acc_list)plt.ylabel('accuracy')plt.xlabel('epoch')plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469789.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mini2440驱动分析之LCD

mini2440集成了lcd控制器的接口,板子上接的lcd硬件是统宝240*320,TFT型lcd。lcd驱动对应的文件为s3c2410fb.c。要读懂这个驱动必须了解linux platform子系统的知识。因为这个驱动是以platform驱动的形式注册到内核。而且还需要frambuffer驱动的知识,因为这个驱动还是frambuf…

数组长度改变方法

package com.lovo.array;public class SuperIntArray {//属性public int[] array;private int index;//代表两层含义:1、下一个元素所在的下标;2、已经放了多少个元素。public SuperIntArray(){this.array new int[20];}//行为//放入元素public void ad…

Inception(Pytorch实现)

论文在此: Going deeper with convolutions 论文下载: https://arxiv.org/pdf/1409.4842.pdf 网络结构图: import torch import torch.nn as nn import torch.nn.functional as Fclass Inception3(nn.Module):def __init__(self, num_classes1000, aux_logitsTrue, transform…

html导出pdf实例,jsPDF导出pdf示例

jsPDF貌似不支持中文复制代码 代码如下:Downloadifybody {background: #fff; width: 500px; margin: 20px auto;}input, textarea, p { font-family: 宋体, 黑体; font-size: 12pt;}input, textarea { border: solid 1px #aaa; padding: 4px; width: 98%;}window.loadfunction(…

SecureCRT 用来当串口工具的设置

今天从淘宝网上买的USB转串口线终于到了,从网上下载了驱动,关于USB转串口驱动在我上传的资源里面有,关于SecureCRT这个串口调试工具我也上传了,是个绿色免安装版本。 刚开始的时候一步一步的设置串口,连接串口也可以连…

Brainstorm-the walkthrough example: Image Classification

(1) 运行create data,其中包括下载cifar10,并转换为hdf5格式(详见百度百科:http://baike.baidu.com/view/771949.htm#4_2): cifar10的数据简介见:http://www.cs.toronto.edu/~kriz/cifar.html cd data pyth…

卷积神经网络(高级篇) Inception Moudel

Inception Moudel 1、卷积核超参数选择困难,自动找到卷积的最佳组合。 2、1x1卷积核,不同通道的信息融合。使用1x1卷积核虽然参数量增加了,但是能够显著的降低计算量(operations) 3、Inception Moudel由4个分支组成,要分清哪些…

计算机谈音乐薛之谦,明星浮世绘之薛之谦:分析了50多首音乐作品,为其总结了五个特点...

原标题:明星浮世绘之薛之谦:分析了50多首音乐作品,为其总结了五个特点薛之谦,才华横溢思维敏捷,性格搞怪却又忧郁。我曾经用四个字来形容他,沙雕其外,金玉其中。记得老薛曾经发布了一个动态&…

linux内核下载 编译

linux内核下载网址 今天去看了一场电影“疯狂的原始人”----回来的车上看到一个老奶奶传教士,我想对自己多,加油,加油学习,深思深思 我们现在用的安霸系统,每搞一次我都会进行一次备份,一个系统加上GUI一起都有差不多一G多,而今天下载了最新的linux内核版本,才不80M左…

黑客与画家读后感

财富的定义,金钱只是媒介,财富是人们需要的东西。你如果不是富二代,只是说明你没钱,但你还是通过创造来获得财富。贫富差距不一定就是坏事。如何获得财富,你的工作要满足两个特征:可测量性,可放大性。比如一…

Deep learning

论文:doi:10.1038/nature14539 论文意义和主要内容 三巨头从机器学习谈起,指出传统机器学习的不足,总览深度学习理论、模型,给出了深度学习的发展历史,以及DL中最重要的算法和理论。 概念: 原理&#xff…

清华大学计算机学院主页,计算机图形学基础课程主页 | 清华大学计算机系

1. 2002级本科生黄其兴同学在完成图形学课作业的过程中就B样条的升阶和顶点插入算法进行了深入的研究,并在胡事民教授和Martin教授的共同指导下在国际著名刊物Computer Aided Geometric Design (CAGD)上发表文章.Fast degree elevation and knot insertion for B-s…

mkimage command not found

UIMAGE arch/arm/boot/uImage "mkimage" command not found - U-Boot images will not be built Image arch/arm/boot/uImage is ready cp: 无法获取"arch/arm/boot/uImage" 的文件状态(stat): 没有那个文件或目录 使用make uImage编译生成的内核能由ub…

克隆虚拟机 virtualbox 修改 uuid

cmd E:\Program Files\Oracle\VirtualBox>VBoxManage.exe internalcommands sethduuid "E:\Program Files\Oracle\VirtualBox VMs\115-3.vhd"转载于:https://www.cnblogs.com/lonelydreamer/p/6140931.html

第一周:深度学习引言(Introduction to Deep Learning)

1.1 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告。但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注。 深度学习做的非常好的一个方面就是读取X光图像,到生活中的个性化教育&#xf…

无忧计算机二级试题题库,全国计算机二级MS Office试题

考无忧小编为各位考生搜集整理了的二级MS Office试题,希望可以为各位的备考锦上添花,雪中送炭!记得刷计算机等级考试题库哟!1、被选中要筛选的数据单元格的下拉箭头中有哪几种筛选方式( ABD)A、全部B、前十个C、后十个D、自定义2、…

第二周:神经网络的编程基础之Python与向量化

本节课我们将来探讨Python和向量化的相关知识。 1. Vectorization 深度学习算法中,数据量很大,在程序中应该尽量减少使用循环语句,而可以使用向量运算来提高程序运行速度。 向量化(Vectorization)就是利用矩阵运算的…

U-boot移槙

1、我是照着这里去移植的 http://blog.chinaunix.net/uid-26306203-id-3716785.html 2、然后make 出现问题,到这里去有解决办法:http://blog.csdn.net/zjt289198457/article/details/6854177 : http://blog.csdn.net/zjt289198457/article/details/68…

不动产中心考试计算机测试题,2005年全国计算机二级考试VFP笔试模拟题

一、选择题(每小题 2 分,共 70分)下列各题A)、B)、C)、D)四个选项中,只有一个选项是正确的,请将正确选项涂写在答题卡相应位置上,答在试卷上不得分。(1)下列选项不符合良好程序设计风格的是________。A)源程序要文档化B)数据说明的…

第三周:浅层神经网络

1. 神经网络综述 首先,我们从整体结构上来大致看一下神经网络模型。 前面的课程中,我们已经使用计算图的方式介绍了逻辑回归梯度下降算法的正向传播和反向传播两个过程。如下图所示。神经网络的结构与逻辑回归类似,只是神经网络的层数比逻辑…