智慧交通day01-算法库03:cv.dnn

1.DNN模块

1.1. 模块简介

OpenCV中的深度学习模块(DNN)只提供了推理功能,不涉及模型的训练,支持多种深度学习框架,比如TensorFlow,Caffe,Torch和Darknet。

 OpenCV那为什么要实现深度学习模块?

  • 轻量型。DNN模块只实现了推理功能,代码量及编译运行开销远小于其他深度学习模型框架。

  • 使用方便。DNN模块提供了内建的CPU和GPU加速,无需依赖第三方库,若项目中之前使用了OpenCV,那么通过DNN模块可以很方便的为原项目添加深度学习的能力。

  • 通用性。DNN模块支持多种网络模型格式,用户无需额外的进行网络模型的转换就可以直接使用,支持的网络结构涵盖了常用的目标分类,目标检测和图像分割的类别,如下图所示:

 DNN模块支持多种类型网络层,基本涵盖常见的网络运算需求。

 也支持多种运算设备(CPU,GPU等)和操作系统(Linux,windows,MacOS等)。

1.2.模块架构

DNN模块的架构如下图所示: 

 从上往下依次是:

  • 第一层:语言绑定层,主要支持Python和Java,还包括准确度测试、性能测试和部分示例程序。
  • 第二层:C++的API层,是原生的API,功能主要包括加载网络模型、推理运算以及获取网络的输出等。
  • 第三层:实现层,包括模型转换器、DNN引擎以及层实现等。模型转换器将各种网络模型格式转换为DNN模块的内部表示,DNN引擎负责内部网络的组织和优化,层实现指各种层运算的实现过程。
  • 第四层:加速层,包括CPU加速、GPU加速、Halide加速和Intel推理引擎加速。CPU加速用到了SSE和AVX指令以及大量的多线程元语,而OpenCL加速是针对GPU进行并行运算的加速。Halide是一个实验性的实现,并且性能一般。Intel推理引擎加速需要安装OpenVINO库,它可以实现在CPU、GPU和VPU上的加速,在GPU上内部会调用clDNN库来做GPU上的加速,在CPU上内部会调用MKL-DNN来做CPU加速,而Movidius主要是在VPU上使用的专用库来进行加速。

除了上述的加速方法外,DNN模块还有网络层面的优化。这种优化优化分两类,一类是层融合,还有一类是内存复用。

  • 层融合

    层融合通过对网络结构的分析,把多个层合并到一起,从而降低网络复杂度和减少运算量。

如上图所示,卷积层后面的BatchNorm层、Scale层和RelU层都被合并到了卷积层当中。这样一来,四个层运算最终变成了一个层运算。

 如上图所示,网络结构将卷积层1和Eltwise Layer和RelU Layer合并成一个卷积层,将卷积层2作为第一个卷积层新增的一个输入。这样一来,原先的四个网络层变成了两个网络层运算。

 如上图所示,原始的网络结构把三个层的输出通过连接层连接之后输入到后续层,这种情况可以把中间的连接层直接去掉,将三个网络层输出直接接到第四层的输入上面,这种网络结构多出现SSD类型的网络架构当中。

  • 内存复用
    深度神经网络运算过程当中会占用非常大量的内存资源,一部分是用来存储权重值,另一部分是用来存储中间层的运算结果。我们考虑到网络运算是一层一层按顺序进行的,因此后面的层可以复用前面的层分配的内存。
    下图是一个没有经过优化的内存重用的运行时的存储结构,红色块代表的是分配出来的内存,绿色块代表的是一个引用内存,蓝色箭头代表的是引用方向。数据流是自下而上流动的,层的计算顺序也是自下而上进行运算。每一层都会分配自己的输出内存,这个输出被后续层引用为输入。

对内存复用也有两种方法:

第一种内存复用的方法是输入内存复用。

 如上图所示,如果我们的层运算是一个in-place模式,那么我们无须为输出分配内存,直接把输出结果写到输入的内存当中即可。in-place模式指的是运算结果可以直接写回到输入而不影响其他位置的运算,如每个像素点做一次Scale的运算。类似于in-place模式的情况,就可以使用输入内存复用的方式。

第二种内存复用的方法是后续层复用前面层的输出。

 如上图所示,在这个例子中,Layer3在运算时,Layer1和Layer2已经完成了运算。此时,Layer1的输出内存已经空闲下来,因此,Layer3不需要再分配自己的内存,直接引用Layer1的输出内存即可。由于深度神经网络的层数可以非常多,这种复用情景会大量的出现,使用这种复用方式之后,网络运算的内存占用量会下降30%~70%。

2.常用方法简介

DNN模块有很多可直接调用的Python API接口,现将其介绍如下:

2.1.dnn.blobFromImage

作用:根据输入图像,创建维度N(图片的个数),通道数C,高H和宽W次序的blobs

原型:

blobFromImage(image, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None):

参数:

  • image:cv2.imread 读取的图片数据

  • scalefactor: 缩放像素值,如 [0, 255] - [0, 1]

  • size: 输出blob(图像)的尺寸,如 (netInWidth, netInHeight)
  • mean: 从各通道减均值. 如果输入 image 为 BGR 次序,且swapRB=True,则通道次序为 (mean-R, mean-G, mean-B).
  • swapRB: 交换 3 通道图片的第一个和最后一个通道,如 BGR - RGB
  • crop: 图像尺寸 resize 后是否裁剪. 如果crop=True,则,输入图片的尺寸调整resize后,一个边对应与 size 的一个维度,而另一个边的值大于等于 size 的另一个维度;然后从 resize 后的图片中心进行 crop. 如果crop=False,则无需 crop,只需保持图片的长宽比
  • ddepth: 输出 blob 的 Depth. 可选: CV_32F 或 CV_8U

示例:

import cv2
from cv2 import dnn
import numpy as np 
import matplotlib.pyplot as pltimg_cv2 = cv2.imread("test.jpeg")
print("原图像大小: ", img_cv2.shape)inWidth = 256
inHeight = 256
outBlob1 = cv2.dnn.blobFromImage(img_cv2,scalefactor=1.0 / 255,size=(inWidth, inHeight),mean=(0, 0, 0),swapRB=False,crop=False)
print("未裁剪输出: ", outBlob1.shape)
outimg1 = np.transpose(outBlob1[0], (1, 2, 0))outBlob2 = cv2.dnn.blobFromImage(img_cv2,scalefactor=1.0 / 255,size=(inWidth, inHeight),mean=(0, 0, 0),swapRB=False,crop=True)
print("裁剪输出: ", outBlob2.shape)
outimg2 = np.transpose(outBlob2[0], (1, 2, 0))plt.figure(figsize=[10, 10])
plt.subplot(1, 3, 1)
plt.title('输入图像', fontsize=16)
plt.imshow(cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.subplot(1, 3, 2)
plt.title('输出图像 - 未裁剪', fontsize=16)
plt.imshow(cv2.cvtColor(outimg1, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.subplot(1, 3, 3)
plt.title('输出图像 - 裁剪', fontsize=16)
plt.imshow(cv2.cvtColor(outimg2, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.show()

输出结果为:

 另外一个API与上述API类似,是进行批量图片处理的,其原型如下所示:

blobFromImages(images, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None):

作用:批量处理图片,创建4维的blob,其它参数类似于 dnn.blobFromImage

2.2.dnn.NMSBoxes

作用:根据给定的检测boxes和对应的scores进行NMS(非极大值抑制)处理

原型:

NMSBoxes(bboxes, scores, score_threshold, nms_threshold, eta=None, top_k=None)

参数:

  • boxes: 待处理的边界框 bounding boxes
  • scores: 对于于待处理边界框的 scores
  • score_threshold: 用于过滤 boxes 的 score 阈值
  • nms_threshold: NMS 用到的阈值
  • indices: NMS 处理后所保留的边界框的索引值
  • eta: 自适应阈值公式中的相关系数: 

  • top_k: 如果 top_k>0,则保留最多 top_k 个边界框索引值.

2.3. dnn.readNet

作用:加载深度学习网络及其模型参数

原型:

readNet(model, config=None, framework=None)

参数:

  • model: 训练的权重参数的模型二值文件,支持的格式有:*.caffemodel(Caffe)、*.pb(TensorFlow)、*.t7 或 *.net(Torch)、 *.weights(Darknet)、*.bin(DLDT).
  • config: 包含网络配置的文本文件,支持的格式有:*.prototxt (Caffe)、*.pbtxt (TensorFlow)、*.cfg (Darknet)、*.xml (DLDT).
  • framework: 所支持格式的框架名

该函数自动检测训练模型所采用的深度框架,然后调用 readNetFromCaffereadNetFromTensorflowreadNetFromTorch 或 readNetFromDarknet 中的某个函数完成深度学习网络模型及模型参数的加载。

下面我们看下对应于特定框架的API:

  1. Caffe
readNetFromCaffe(prototxt, caffeModel=None)
作用:加载采用Caffe的配置网络和训练的权重参数
  1. Darknet

    readNetFromDarknet(cfgFile, darknetModel=None)
    

    作用:加载采用Darknet的配置网络和训练的权重参数

  2. Tensorflow

    readNetFromTensorflow(model, config=None)
    

    作用:加载采用Tensorflow 的配置网络和训练的权重参数

    参数:

    • model: .pb 文件
    • config: .pbtxt 文件
  3. Torch

    readNetFromTorch(model, isBinary=None)
    

    作用:加载采用 Torch 的配置网络和训练的权重参数

    参数:

    • model: 采用 torch.save()函数保存的文件
  4. ONNX

    readNetFromONNX(onnxFile)

    作用:加载 .onnx 模型网络配置参数和权重参数


总结

  1. DNN模块是OPenCV中的深度学习模块

    优势:轻量型,方便,通用性

    架构:语言绑定层,API层,实现层,加速层

    加速方法:层融合、内存复用

  2. 常用API

    • dnn.blobfromImage

      利用图片创建输入到模型中的blobs

    • dnn.NMSBoxes

      根据boxes和scores进行非极大值抑制

    • dnn.readNet

      加载网络模型和训练好的权重参数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469755.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高标清硬盘播出服务器,高标清4通道SDI硬盘播出服务器 XUAPX4000HD

原标题:高标清4通道SDI硬盘播出服务器 XUAPX4000HDXUAP多通道硬盘自动播出系全系统设计 IP/TS/SDI多种播出模式XUAP系统采用先进硬件译码技术的自动播出系统,可依设定时间自动化切换影片与触发连动外围设备,如 矩阵、录像机、切换器 等&#…

智慧交通day02-车流量检测实现01:总览

随着城市交通量的迅猛增加,车流量统计已成为智能交通系统中一项关键技术和热门研究方向。高效而精确的车流量检测可以交通管理者和决策者,以及驾驶员提供数据支撑,从而为交通调度,降低拥堵情况的发生,提高道路利用率有…

从qq服务器删除误收邮件,如何恢复从qq邮箱删除的电子邮件

Qq邮箱恢复意外删除的邮件方法第1步: 如果您删除邮件,则无论是普通删除还是完整删除,都可以选择在几秒钟内撤消,以便恢复以前意外删除的邮件. 也就是说,在删除消息后,请在删除上述提示后单击“撤消”. 如果提示消息消失…

智慧交通day02-车流量检测实现02:多目标追踪

1.多目标跟踪分类 多目标跟踪,即MOT(Multi-Object Tracking),也就是在一段视频中同时跟踪多个目标。MOT主要应用在安防监控和自动驾驶等领域中。 1.1 初始化方法 多目标跟踪,即MOT(Multi-Object Trackin…

GIT非常好的整理

初始化配置 C代码 #配置使用git仓库的人员姓名 git config --global user.name "Your Name Comes Here" #配置使用git仓库的人员email git config --global user.email youyourdomain.example.com #配置到缓存 默认15分钟 git config --global cred…

centos虚拟机wifi设置代理服务器,vmware虚拟机centos在宿主机连WIF..._网络编辑_帮考网...

caotongjiang新兵答主12-13TA获得超过6747个赞资料:netmask ip地址 broadcast 子网掩码 gateway 网关 dns DNS服务器vmware三种网络连接上网设置:1.桥接方式(bridge) :默认使用vmnet0将虚拟机的ip设置与主机同网段未使用ip,其余与主机相同:ip地址与主机同段相异,子网…

ValueError: check_hostname requires server_hostname的解决办法

在用pip安装scikit-image库时报错:ValueError: check_hostname requires server_hostname 报错ValueError: check_hostname requires server_hostname通常是因为版本冲突等原因,查遍网上众多大佬总结的经验后,最终发现是由网络代理导致的问题…

salesforce 零基础学习(五十四)常见异常友好消息提示

异常或者error code汇总:https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_calls_concepts_core_data_objects.htm 做项目的时候有很多异常是我们经常遇到的: 1.空指针异常; 2.死锁或者超时; 3.级联删…

★Anaconda中创建、切换、删除虚拟环境(指定仓库)

指定仓库安装源文件 pip install 包名 -i http://pypi.douban.com/simple 可以换源列表: 阿里云 https://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/ #常用 豆瓣(douban) http://pypi.douban.com/simple/ 清华…

怎样修改t3服务器地址,怎样修改t3服务器地址

怎样修改t3服务器地址 内容精选换一换华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。Atlas 200 DK开发者板支持通过USB端口或者网线与Ubuntu服务器…

结构体中.和-的用法

#include"stdio.h" #include"stdlib.h"struct linkwqf{int age;char * name;struct linkwqf* next; }; struct linkwqf linkwww1;/*第一种声明结构体类型变量的方法 这种方法意义不大*/ typedef struct linkwqf linkwww2;/*第一种声明结构体类型变量的方…

智慧交通day02-车流量检测实现03:辅助功能(交并比and候选框的表现形式)

学习目标 能够实现两个目标框的交并比 了解候选框在多目标跟踪中的表达方式及相应转换方法 IOU是交并比(Intersection-over-Union)是目标检测中使用的一个概念是产生的候选框(candidate bound)与原标记框(ground tru…

电脑pro,拒绝等待!七彩虹全新设计师电脑ProMaster H1为创意加速

新年伊始,七彩虹科技正式发布了全新设计师领域整机系列:Colorful ProMaster(专业大师)。并同时公布了旗下第一款设计师电脑整机:Colorful ProMaster H1。其采用全新三面环绕布艺设计要素,搭载NVIDIA GeForce RTX Studio和英特尔傲…

智慧交通day02-车流量检测实现04:卡尔曼滤波器

1、背景介绍 卡尔曼滤波(Kalman)无论是在单目标还是多目标领域都是很常用的一种算法,我们将卡尔曼滤波看做一种运动模型,用来对目标的位置进行预测,并且利用预测结果对跟踪的目标进行修正,属于自动控制理论…

java 简单类继承

class Person {String name;int age;public String talk(){return "我是:"this.name",今年:"this.age"岁";}public Person()/* 无参数的构造函数*/{System.out.println("1.public Person(){}");} } class Stude…

成功解决 ProxyError: Conda cannot proceed due to an error in your proxy configuration

给win10的ubuntu1804安装anaconda, 执行conda create -n daily python3.7创建虚拟环境时报错 Collecting package metadata (current_repodata.json): failedProxyError: Conda cannot proceed due to an error in your proxy configuration. Check for typos and other confi…

android 4.2修改设置菜单的背景颜色

设置中的背景主要来主题的设置, 在4.X后, android添加了新的主题: Holo 从Settings/AndroidManifest.xml中找到: Xml代码 <application android:label"string/settings_label" android:icon"mipmap/ic_launcher_settings" android…

智慧交通day02-车流量检测实现05:卡尔曼滤波器实践(小车模型)

1.filterpy FilterPy是一个实现了各种滤波器的Python模块&#xff0c;它实现著名的卡尔曼滤波和粒子滤波器。我们可以直接调用该库完成卡尔曼滤波器实现。其中的主要模块包括&#xff1a; filterpy.kalman 该模块主要实现了各种卡尔曼滤波器&#xff0c;包括常见的线性卡尔曼滤…

Linux多线程——使用互斥量同步线程

前文再续&#xff0c;书接上一回&#xff0c;在上一篇文章&#xff1a;Linux多线程——使用信号量同步线程中&#xff0c;我们留下了一个如何使用互斥量来进行线程同步的问题&#xff0c;本文将会给出互斥量的详细解说&#xff0c;并用一个互斥量解决上一篇文章中&#xff0c;要…

智慧交通day02-车流量检测实现05:小车匀速案例

""" 现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示&#xff1a;导入相应的工具包小车运动数据生成参数初始化利用卡尔曼滤波进行小车状态预测可视化&#xff1a;观察参数的变化与结果 """#导入包 from matplotlib import pyplo…