【Pytorch神经网络实战案例】16 条件WGAN模型生成可控Fashon-MNST模拟数据

1 条件GAN前置知识

条件GAN也可以使GAN所生成的数据可控,使模型变得实用,

1.1 实验描述

搭建条件GAN模型,实现向模型中输入标签,并使其生成与标签类别对应的模拟数据的功能,基于WGAN-gp模型改造实现带有条件的wGAN-gp模型。

2 实例代码编写

条件GAN与条件自编码神经网络的做法几乎一样,在GAN的基础之上,为每个模型输入都添加一个标签向量。

2.1 代码实战:引入模块并载入样本----WGAN_cond_237.py(第1部分)

import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torch import nn
import torch.autograd as autograd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# 1.1 引入模块并载入样本:定义基本函数,加载FashionMNIST数据集
def to_img(x):x = 0.5 * (x+1)x = x.clamp(0,1)x = x.view(x.size(0),1,28,28)return xdef imshow(img,filename = None):npimg = img.numpy()plt.axis('off')array = np.transpose(npimg,(1,2,0))if filename != None:matplotlib.image.imsave(filename,array)else:plt.imshow(array)# plt.savefig(filename) # 保存图片 注释掉,因为会报错,暂时不知道什么原因 2022.3.26 15:20plt.show()img_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5],std=[0.5])]
)data_dir = './fashion_mnist'train_dataset = torchvision.datasets.FashionMNIST(data_dir,train=True,transform=img_transform,download=True)
train_loader = DataLoader(train_dataset,batch_size=1024,shuffle=True)
# 测试数据集
val_dataset = torchvision.datasets.FashionMNIST(data_dir,train=False,transform=img_transform)
test_loader = DataLoader(val_dataset,batch_size=10,shuffle=False)
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

2.2 代码实战:实现生成器和判别器----WGAN_cond_237.py(第2部分)

# 1.2 实现生成器和判别器 :因为复杂部分都放在loss值的计算方面了,所以生成器和判别器就会简单一些。
# 生成器和判别器各自有两个卷积和两个全连接层。生成器最终输出与输入图片相同维度的数据作为模拟样本。
# 判别器的输出不需要有激活函数,并且输出维度为1的数值用来表示结果。
# 在GAN模型中,因判别器的输入则是具体的样本数据,要区分每个数据的分布特征,所以判别器使用实例归一化,
class WGAN_D(nn.Module): # 定义判别器类D :有两个卷积和两个全连接层def __init__(self,inputch=1):super(WGAN_D, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(inputch,64,4,2,1), # 输出形状为[batch,64,28,28]nn.LeakyReLU(0.2,True),nn.InstanceNorm2d(64,affine=True))self.conv2 = nn.Sequential(nn.Conv2d(64,128,4,2,1),# 输出形状为[batch,64,14,14]nn.LeakyReLU(0.2,True),nn.InstanceNorm2d(128,affine=True))self.fc = nn.Sequential(nn.Linear(128*7*7,1024),nn.LeakyReLU(0.2,True))self.fc2 = nn.Sequential(nn.InstanceNorm1d(1,affine=True),nn.Flatten(),nn.Linear(1024,1))def forward(self,x,*arg): # 正向传播x = self.conv1(x)x = self.conv2(x)x = x.view(x.size(0),-1)x = self.fc(x)x = x.reshape(x.size(0),1,-1)x = self.fc2(x)return x.view(-1,1).squeeze(1)# 在GAN模型中,因生成器的初始输入是随机值,所以生成器使用批量归一化。
class WGAN_G(nn.Module): # 定义生成器类G:有两个卷积和两个全连接层def __init__(self,input_size,input_n=1):super(WGAN_G, self).__init__()self.fc1 = nn.Sequential(nn.Linear(input_size * input_n,1024),nn.ReLU(True),nn.BatchNorm1d(1024))self.fc2 = nn.Sequential(nn.Linear(1024,7*7*128),nn.ReLU(True),nn.BatchNorm1d(7*7*128))self.upsample1 = nn.Sequential(nn.ConvTranspose2d(128,64,4,2,padding=1,bias=False), # 输出形状为[batch,64,14,14]nn.ReLU(True),nn.BatchNorm2d(64))self.upsample2 = nn.Sequential(nn.ConvTranspose2d(64,1,4,2,padding=1,bias=False), # 输出形状为[batch,64,28,28]nn.Tanh())def forward(self,x,*arg): # 正向传播x = self.fc1(x)x = self.fc2(x)x = x.view(x.size(0),128,7,7)x = self.upsample1(x)img = self.upsample2(x)return img

2.3 代码实战:定义函数完成梯度惩罚项----WGAN_cond_237.py(第3部分)

# 1.3 定义函数compute_gradient_penalty()完成梯度惩罚项
# 惩罚项的样本X_inter由一部分Pg分布和一部分Pr分布组成,同时对D(X_inter)求梯度,并计算梯度与1的平方差,最终得到gradient_penalties
lambda_gp = 10
# 计算梯度惩罚项
def compute_gradient_penalty(D,real_samples,fake_samples,y_one_hot):# 获取一个随机数,作为真假样本的采样比例eps = torch.FloatTensor(real_samples.size(0),1,1,1).uniform_(0,1).to(device)# 按照eps比例生成真假样本采样值X_interX_inter = (eps * real_samples + ((1-eps)*fake_samples)).requires_grad_(True)d_interpolates = D(X_inter,y_one_hot)fake = torch.full((real_samples.size(0),),1,device=device) # 计算梯度输出的掩码,在本例中需要对所有梯度进行计算,故需要按照样本个数生成全为1的张量。# 求梯度gradients = autograd.grad(outputs=d_interpolates, # 输出值outputs,传入计算过的张量结果inputs=X_inter,# 待求梯度的输入值inputs,传入可导的张量,即requires_grad=Truegrad_outputs=fake, # 传出梯度的掩码grad_outputs,使用1和0组成的掩码,在计算梯度之后,会将求导结果与该掩码进行相乘得到最终结果。create_graph=True,retain_graph=True,only_inputs=True)[0]gradients = gradients.view(gradients.size(0),-1)gradient_penaltys = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * lambda_gpreturn gradient_penaltys

2.4 代码实战:定义模型的训练函数----WGAN_cond_237.py(第4部分)

# 1.4 定义模型的训练函数
# 定义函数train(),实现模型的训练过程。
# 在函数train()中,按照对抗神经网络专题(一)中的式(8-24)实现模型的损失函数。
# 判别器的loss为D(fake_samples)-D(real_samples)再加上联合分布样本的梯度惩罚项gradient_penalties,其中fake_samples为生成的模拟数据,real_Samples为真实数据,
# 生成器的loss为-D(fake_samples)。
def train(D,G,outdir,z_dimension,num_epochs=30):d_optimizer = torch.optim.Adam(D.parameters(),lr=0.001) # 定义优化器g_optimizer = torch.optim.Adam(G.parameters(),lr=0.001)os.makedirs(outdir,exist_ok=True) # 创建输出文件夹# 在函数train()中,判别器和生成器是分开训练的。让判别器学习的次数多一些,判别器每训练5次,生成器优化1次。# WGAN_gp不会因为判别器准确率太高而引起生成器梯度消失的问题,所以好的判别器会让生成器有更好的模拟效果。for epoch in range(num_epochs):for i,(img,lab) in enumerate(train_loader):num_img = img.size(0)# 训练判别器real_img = img.to(device)y_one_hot = torch.zeros(lab.shape[0],10).scatter_(1,lab.view(lab.shape[0],1),1).to(device)for ii in range(5): # 循环训练5次d_optimizer.zero_grad() # 梯度清零# 对real_img进行判别real_out = D(real_img,y_one_hot)# 生成随机值z = torch.randn(num_img,z_dimension).to(device)fake_img = G(z,y_one_hot) # 生成fake_imgfake_out = D(fake_img,y_one_hot) # 对fake_img进行判别# 计算梯度惩罚项gradient_penalty = compute_gradient_penalty(D,real_img.data,fake_img.data,y_one_hot)# 计算判别器的lossd_loss = -torch.mean(real_out)+torch.mean(fake_out)+gradient_penaltyd_loss.backward()d_optimizer.step()# 训练生成器for ii in range(1): # 训练一次g_optimizer.zero_grad() # 梯度清0z = torch.randn(num_img,z_dimension).to(device)fake_img = G(z,y_one_hot)fake_out = D(fake_img,y_one_hot)g_loss =  -torch.mean(fake_out)g_loss.backward()g_optimizer.step()# 输出可视化结果,并将生成的结果以图片的形式存储在硬盘中fake_images = to_img(fake_img.cpu().data)real_images = to_img(real_img.cpu().data)rel = torch.cat([to_img(real_images[:10]), fake_images[:10]], axis=0)imshow(torchvision.utils.make_grid(rel, nrow=10),os.path.join(outdir, 'fake_images-{}.png'.format(epoch + 1)))# 输出训练结果print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} ''D real: {:.6f}, D fake: {:.6f}'.format(epoch, num_epochs, d_loss.data, g_loss.data,real_out.data.mean(), fake_out.data.mean()))# 保存训练模型torch.save(G.state_dict(), os.path.join(outdir, 'generator.pth'))torch.save(D.state_dict(), os.path.join(outdir, 'discriminator.pth'))

2.5 代码实战:现可视化模型结果----WGAN_cond_237.py(第5部分)

# 1.5 定义函数,实现可视化模型结果:获取一部分测试数据,显示由模型生成的模拟数据。
def displayAndTest(D,G,z_dimension):    # 可视化结果sample = iter(test_loader)images, labels = sample.next()y_one_hot = torch.zeros(labels.shape[0], 10).scatter_(1,labels.view(labels.shape[0], 1), 1).to(device)num_img = images.size(0) # 获取样本个数with torch.no_grad():z = torch.randn(num_img, z_dimension).to(device) # 生成随机数fake_img = G(z, y_one_hot)fake_images = to_img(fake_img.cpu().data) # 生成模拟样本rel = torch.cat([to_img(images[:10]), fake_images[:10]], axis=0)imshow(torchvision.utils.make_grid(rel, nrow=10))print(labels[:10])

2.6 定义判别器类CondWGAN_D----WGAN_cond_237.py

(第6部分)

# 1.6 定义判别器类CondWGAN_D
# 在判别器和生成器类的正向结构中,增加标签向量的输入,并使用全连接网络对标签向量的维度进行扩展,同时将其连接到输入数据。
class CondWGAN_D(WGAN_D): # 定义判别器类CondWGAN_D,使其继承自WGAN_D类。def __init__(self, inputch=2):super(CondWGAN_D, self).__init__(inputch)self.labfc1 = nn.Linear(10, 28 * 28)def forward(self, x, lab):  # 添加输入标签,batch, width, height, channel=1d_in = torch.cat((x.view(x.size(0), -1), self.labfc1(lab)), -1)x = d_in.view(d_in.size(0), 2, 28, 28)return super(CondWGAN_D, self).forward(x, lab)

2.7 定义生成器类CondWGAN_G----WGAN_cond_237.py(第7部分)

# 1.7 定义生成器类CondWGAN_G
# 在判别器和生成器类的正向结构中,增加标签向量的输入,并使用全连接网络对标签向量的维度进行扩展,同时将其连接到输入数据。
class CondWGAN_G(WGAN_G): # 定义生成器类CondWGAN_G,使其继承自WGAN_G类。def __init__(self, input_size, input_n=2):super(CondWGAN_G, self).__init__(input_size, input_n)self.labfc1 = nn.Linear(10, input_size)def forward(self, x, lab): # 添加输入标签,batch, width, height, channel=1d_in = torch.cat((x, self.labfc1(lab)), -1)return super(CondWGAN_G, self).forward(d_in, lab)

2.8 调用函数并训练模型----WGAN_cond_237.py(第6部分)

# 1.8 调用函数并训练模型:实例化判别器和生成器模型,并调用函数进行训练
if __name__ == '__main__':z_dimension = 40  # 设置输入随机数的维度D = CondWGAN_D().to(device)  # 实例化判别器G = CondWGAN_G(z_dimension).to(device)  # 实例化生成器train(D, G, './condw_img', z_dimension) # 训练模型displayAndTest(D, G, z_dimension) # 输出可视化

在训练之后,模型输出了可视化结果,如图所示,第1行是原始样本,第2行是输出的模拟样本。

同时,程序也输出了图8-20中样本对应的类标签,如下:

    tensor([9,2,1,1,6,1,4,6,5,7])

从输出的样本中可以看到,输出的模拟样本与原始样本的类别一致,这表明生成器可以按照指定的标签生成模拟数据。

 3  代码汇总(WGAN_cond_237.py)

import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torch import nn
import torch.autograd as autograd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# 1.1 引入模块并载入样本:定义基本函数,加载FashionMNIST数据集
def to_img(x):x = 0.5 * (x+1)x = x.clamp(0,1)x = x.view(x.size(0),1,28,28)return xdef imshow(img,filename = None):npimg = img.numpy()plt.axis('off')array = np.transpose(npimg,(1,2,0))if filename != None:matplotlib.image.imsave(filename,array)else:plt.imshow(array)# plt.savefig(filename) # 保存图片 注释掉,因为会报错,暂时不知道什么原因 2022.3.26 15:20plt.show()img_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5],std=[0.5])]
)data_dir = './fashion_mnist'train_dataset = torchvision.datasets.FashionMNIST(data_dir,train=True,transform=img_transform,download=True)
train_loader = DataLoader(train_dataset,batch_size=1024,shuffle=True)
# 测试数据集
val_dataset = torchvision.datasets.FashionMNIST(data_dir,train=False,transform=img_transform)
test_loader = DataLoader(val_dataset,batch_size=10,shuffle=False)
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)# 1.2 实现生成器和判别器 :因为复杂部分都放在loss值的计算方面了,所以生成器和判别器就会简单一些。
# 生成器和判别器各自有两个卷积和两个全连接层。生成器最终输出与输入图片相同维度的数据作为模拟样本。
# 判别器的输出不需要有激活函数,并且输出维度为1的数值用来表示结果。
# 在GAN模型中,因判别器的输入则是具体的样本数据,要区分每个数据的分布特征,所以判别器使用实例归一化,
class WGAN_D(nn.Module): # 定义判别器类D :有两个卷积和两个全连接层def __init__(self,inputch=1):super(WGAN_D, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(inputch,64,4,2,1), # 输出形状为[batch,64,28,28]nn.LeakyReLU(0.2,True),nn.InstanceNorm2d(64,affine=True))self.conv2 = nn.Sequential(nn.Conv2d(64,128,4,2,1),# 输出形状为[batch,64,14,14]nn.LeakyReLU(0.2,True),nn.InstanceNorm2d(128,affine=True))self.fc = nn.Sequential(nn.Linear(128*7*7,1024),nn.LeakyReLU(0.2,True))self.fc2 = nn.Sequential(nn.InstanceNorm1d(1,affine=True),nn.Flatten(),nn.Linear(1024,1))def forward(self,x,*arg): # 正向传播x = self.conv1(x)x = self.conv2(x)x = x.view(x.size(0),-1)x = self.fc(x)x = x.reshape(x.size(0),1,-1)x = self.fc2(x)return x.view(-1,1).squeeze(1)# 在GAN模型中,因生成器的初始输入是随机值,所以生成器使用批量归一化。
class WGAN_G(nn.Module): # 定义生成器类G:有两个卷积和两个全连接层def __init__(self,input_size,input_n=1):super(WGAN_G, self).__init__()self.fc1 = nn.Sequential(nn.Linear(input_size * input_n,1024),nn.ReLU(True),nn.BatchNorm1d(1024))self.fc2 = nn.Sequential(nn.Linear(1024,7*7*128),nn.ReLU(True),nn.BatchNorm1d(7*7*128))self.upsample1 = nn.Sequential(nn.ConvTranspose2d(128,64,4,2,padding=1,bias=False), # 输出形状为[batch,64,14,14]nn.ReLU(True),nn.BatchNorm2d(64))self.upsample2 = nn.Sequential(nn.ConvTranspose2d(64,1,4,2,padding=1,bias=False), # 输出形状为[batch,64,28,28]nn.Tanh())def forward(self,x,*arg): # 正向传播x = self.fc1(x)x = self.fc2(x)x = x.view(x.size(0),128,7,7)x = self.upsample1(x)img = self.upsample2(x)return img# 1.3 定义函数compute_gradient_penalty()完成梯度惩罚项
# 惩罚项的样本X_inter由一部分Pg分布和一部分Pr分布组成,同时对D(X_inter)求梯度,并计算梯度与1的平方差,最终得到gradient_penalties
lambda_gp = 10
# 计算梯度惩罚项
def compute_gradient_penalty(D,real_samples,fake_samples,y_one_hot):# 获取一个随机数,作为真假样本的采样比例eps = torch.FloatTensor(real_samples.size(0),1,1,1).uniform_(0,1).to(device)# 按照eps比例生成真假样本采样值X_interX_inter = (eps * real_samples + ((1-eps)*fake_samples)).requires_grad_(True)d_interpolates = D(X_inter,y_one_hot)fake = torch.full((real_samples.size(0),),1,device=device) # 计算梯度输出的掩码,在本例中需要对所有梯度进行计算,故需要按照样本个数生成全为1的张量。# 求梯度gradients = autograd.grad(outputs=d_interpolates, # 输出值outputs,传入计算过的张量结果inputs=X_inter,# 待求梯度的输入值inputs,传入可导的张量,即requires_grad=Truegrad_outputs=fake, # 传出梯度的掩码grad_outputs,使用1和0组成的掩码,在计算梯度之后,会将求导结果与该掩码进行相乘得到最终结果。create_graph=True,retain_graph=True,only_inputs=True)[0]gradients = gradients.view(gradients.size(0),-1)gradient_penaltys = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * lambda_gpreturn gradient_penaltys# 1.4 定义模型的训练函数
# 定义函数train(),实现模型的训练过程。
# 在函数train()中,按照对抗神经网络专题(一)中的式(8-24)实现模型的损失函数。
# 判别器的loss为D(fake_samples)-D(real_samples)再加上联合分布样本的梯度惩罚项gradient_penalties,其中fake_samples为生成的模拟数据,real_Samples为真实数据,
# 生成器的loss为-D(fake_samples)。
def train(D,G,outdir,z_dimension,num_epochs=30):d_optimizer = torch.optim.Adam(D.parameters(),lr=0.001) # 定义优化器g_optimizer = torch.optim.Adam(G.parameters(),lr=0.001)os.makedirs(outdir,exist_ok=True) # 创建输出文件夹# 在函数train()中,判别器和生成器是分开训练的。让判别器学习的次数多一些,判别器每训练5次,生成器优化1次。# WGAN_gp不会因为判别器准确率太高而引起生成器梯度消失的问题,所以好的判别器会让生成器有更好的模拟效果。for epoch in range(num_epochs):for i,(img,lab) in enumerate(train_loader):num_img = img.size(0)# 训练判别器real_img = img.to(device)y_one_hot = torch.zeros(lab.shape[0],10).scatter_(1,lab.view(lab.shape[0],1),1).to(device)for ii in range(5): # 循环训练5次d_optimizer.zero_grad() # 梯度清零# 对real_img进行判别real_out = D(real_img,y_one_hot)# 生成随机值z = torch.randn(num_img,z_dimension).to(device)fake_img = G(z,y_one_hot) # 生成fake_imgfake_out = D(fake_img,y_one_hot) # 对fake_img进行判别# 计算梯度惩罚项gradient_penalty = compute_gradient_penalty(D,real_img.data,fake_img.data,y_one_hot)# 计算判别器的lossd_loss = -torch.mean(real_out)+torch.mean(fake_out)+gradient_penaltyd_loss.backward()d_optimizer.step()# 训练生成器for ii in range(1): # 训练一次g_optimizer.zero_grad() # 梯度清0z = torch.randn(num_img,z_dimension).to(device)fake_img = G(z,y_one_hot)fake_out = D(fake_img,y_one_hot)g_loss =  -torch.mean(fake_out)g_loss.backward()g_optimizer.step()# 输出可视化结果,并将生成的结果以图片的形式存储在硬盘中fake_images = to_img(fake_img.cpu().data)real_images = to_img(real_img.cpu().data)rel = torch.cat([to_img(real_images[:10]), fake_images[:10]], axis=0)imshow(torchvision.utils.make_grid(rel, nrow=10),os.path.join(outdir, 'fake_images-{}.png'.format(epoch + 1)))# 输出训练结果print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} ''D real: {:.6f}, D fake: {:.6f}'.format(epoch, num_epochs, d_loss.data, g_loss.data,real_out.data.mean(), fake_out.data.mean()))# 保存训练模型torch.save(G.state_dict(), os.path.join(outdir, 'cond_generator.pth'))torch.save(D.state_dict(), os.path.join(outdir, 'cond_discriminator.pth'))# 1.5 定义函数,实现可视化模型结果:获取一部分测试数据,显示由模型生成的模拟数据。
def displayAndTest(D,G,z_dimension):    # 可视化结果sample = iter(test_loader)images, labels = sample.next()y_one_hot = torch.zeros(labels.shape[0], 10).scatter_(1,labels.view(labels.shape[0], 1), 1).to(device)num_img = images.size(0) # 获取样本个数with torch.no_grad():z = torch.randn(num_img, z_dimension).to(device) # 生成随机数fake_img = G(z, y_one_hot)fake_images = to_img(fake_img.cpu().data) # 生成模拟样本rel = torch.cat([to_img(images[:10]), fake_images[:10]], axis=0)imshow(torchvision.utils.make_grid(rel, nrow=10))print(labels[:10])# 1.6 定义判别器类CondWGAN_D
# 在判别器和生成器类的正向结构中,增加标签向量的输入,并使用全连接网络对标签向量的维度进行扩展,同时将其连接到输入数据。
class CondWGAN_D(WGAN_D): # 定义判别器类CondWGAN_D,使其继承自WGAN_D类。def __init__(self, inputch=2):super(CondWGAN_D, self).__init__(inputch)self.labfc1 = nn.Linear(10, 28 * 28)def forward(self, x, lab):  # 添加输入标签,batch, width, height, channel=1d_in = torch.cat((x.view(x.size(0), -1), self.labfc1(lab)), -1)x = d_in.view(d_in.size(0), 2, 28, 28)return super(CondWGAN_D, self).forward(x, lab)# 1.7 定义生成器类CondWGAN_G
# 在判别器和生成器类的正向结构中,增加标签向量的输入,并使用全连接网络对标签向量的维度进行扩展,同时将其连接到输入数据。
class CondWGAN_G(WGAN_G): # 定义生成器类CondWGAN_G,使其继承自WGAN_G类。def __init__(self, input_size, input_n=2):super(CondWGAN_G, self).__init__(input_size, input_n)self.labfc1 = nn.Linear(10, input_size)def forward(self, x, lab): # 添加输入标签,batch, width, height, channel=1d_in = torch.cat((x, self.labfc1(lab)), -1)return super(CondWGAN_G, self).forward(d_in, lab)# 1.8 调用函数并训练模型:实例化判别器和生成器模型,并调用函数进行训练
if __name__ == '__main__':z_dimension = 40  # 设置输入随机数的维度D = CondWGAN_D().to(device)  # 实例化判别器G = CondWGAN_G(z_dimension).to(device)  # 实例化生成器train(D, G, './condw_img', z_dimension) # 训练模型displayAndTest(D, G, z_dimension) # 输出可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469321.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android bootchart(二)

这篇文章讲一下MTK8127开机启动的时间 MTK8127发布版本开机时间大约在20秒左右,如果发现开机时间变长,大部分是因为加上了客户订制的东西,代码累赘太多了。 1、下面看一下MT&#…

Android Camera框架

总体介绍 Android Camera 框架从整体上看是一个 client/service 的架构, 有两个进程: client 进程,可以看成是 AP 端,主要包括 JAVA 代码与一些 native c/c++代码; service 进 程,属于服务端,是 native c/c++代码,主要负责和 linux kernel 中的 camera driver 交互,搜集 li…

【Pytorch神经网络实战案例】17 带W散度的WGAN-div模型生成Fashon-MNST模拟数据

1 WGAN-div 简介 W散度的损失函数GAN-dv模型使用了W散度来替换W距离的计算方式,将原有的真假样本采样操作换为基于分布层面的计算。 2 代码实现 在WGAN-gp的基础上稍加改动来实现,重写损失函数的实现。 2.1 代码实战:引入模块并载入样本-…

【Pytorch神经网络理论篇】 24 神经网络中散度的应用:F散度+f-GAN的实现+互信息神经估计+GAN模型训练技巧

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络实战案例】18 最大化深度互信信息模型DIM实现搜索最相关与最不相关的图片

图片搜索器分为图片的特征提取和匹配两部分,其中图片的特征提取是关键。将使用一种基于无监督模型的提取特征的方法实现特征提取,即最大化深度互信息(DeepInfoMax,DIM)方法。 1 最大深度互信信息模型DIM简介 在DIM模型…

【Pytorch神经网络实战案例】19 神经网络实现估计互信息的功能

1 案例说明(实现MINE正方法的功能) 定义两组具有不同分布的模拟数据,使用神经网络的MINE的方法计算两个数据分布之间的互信息 2 代码编写 2.1 代码实战:准备样本数据 import torch import torch.nn as nn import torch.nn.fun…

爬虫实战学习笔记_6 网络请求request模块:基本请求方式+设置请求头+获取cookies+模拟登陆+会话请求+验证请求+上传文件+超时异常

1 requests requests是Python中实现HTTP请求的一种方式,requests是第三方模块,该模块在实现HTTP请求时要比urlib、urllib3模块简化很多,操作更加人性化。 2 基本请求方式 由于requests模块为第三方模块,所以在使用requests模块时…

201521123044 《Java程序设计》第01周学习总结

1.本章学习总结 你对于本章知识的学习总结 1.了解了Java的发展史。 2.学习了什么是JVM,区分JRE与JDK,下载JDK。 3.从C语言的.c 到C的 .cpp再到Java的.java,每种语言编译程序各有不同,却有相似之处。 2. 书面作业 **Q1.为什么java程序可以跨平台运行&…

将一个java工程导入到myeclipse应该注意的地方

[原文]http://www.cnblogs.com/ht2411/articles/5471130.html 1. 最好新建一个myeclipse工程,然后从从文件系统导入该工程文件。 原因:很多项目可能是eclipse创建的,或者myeclipse的版本不一致,这样可能导致很多奇怪的现象&#x…

【Pytorch神经网络理论篇】 25 基于谱域图神经网络GNN:基础知识+GNN功能+矩阵基础+图卷积神经网络+拉普拉斯矩阵

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络基础理论篇】 07 线性回归 + 基础优化算法

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

浅谈命令查询职责分离(CQRS)模式

在常用的三层架构中,通常都是通过数据访问层来修改或者查询数据,一般修改和查询使用的是相同的实体。在一些业务逻辑简单的系统中可能没有什么问题,但是随着系统逻辑变得复杂,用户增多,这种设计就会出现一些性能问题。…

【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类

1 案例说明(图卷积神经网络) CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的…

mybatis基础学习3---特殊sql语句(备忘)

1: 2: 3:resultMap的用法 转载于:https://www.cnblogs.com/kaiwen/p/6486283.html

【Pytorch神经网络实战案例】21 基于Cora数据集实现Multi_Sample Dropout图卷积网络模型的论文分类

Multi-sample Dropout是Dropout的一个变种方法,该方法比普通Dropout的泛化能力更好,同时又可以缩短模型的训练时间。XMuli-sampleDropout还可以降低训练集和验证集的错误率和损失,参见的论文编号为arXⅳ:1905.09788,2019 1 实例说明 本例就…

【Pytorch神经网络理论篇】 26 基于空间域的图卷积GCNs(ConvGNNs):定点域+谱域+图卷积的操作步骤

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

Linux设备驱动之mmap设备操作

1.mmap系统调用 void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset); 功能:负责把文件内容映射到进程的虚拟地址空间,通过对这段内存的读取和修改来实现对文件的读取和修改,而不需要再调用read和write&#xff…

hadoop安装以及Java API操作hdfs

因为工作需求,需要我这边实现一个大文件上传到HDFS的功能,因为本机无法连接公司内网的集群,无奈只好自己动手搭建一个单节点的Hadoop来满足工作的需求。下面简单介绍下安装过程中遇到的坑我的机器是阿里云的最低配 安装文件:hadoo…

【Pytorch神经网络理论篇】 27 图神经网络DGL库:简介+安装+卸载+数据集+PYG库+NetWorkx库

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 28 DGLGraph图的基本操作(缺一部分 明天补)

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…