【Pytorch神经网络实战案例】22 基于Cora数据集实现图注意力神经网络GAT的论文分类

注意力机制的特点是,它的输入向量长度可变,通过将注意力集中在最相关的部分来做出决定。注意力机制结合RNN或者CNN的方法。

1 实战描述

【主要目的:将注意力机制用在图神经网络中,完成图注意力神经网络的结构和搭建】

1.1 实现目的

有一个记录论文信息的数据集,数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,使模型学习已有论文的分类特征,以便预测出未知分类的论文类别。

1.2 图注意力网络图

图注意力网络(GraphAttention Network,GAT)在GCN的基础上添加了一个隐藏的自注意力(self-attention)层。通过叠加Self-attention层,在卷积过程中可将不同的权重分配给邻域内的不同顶点,同时处理不同大小的邻域。

在实际计算时,自注意力机制可以使用多套权重同时进行计算,并且彼此之间不共享权重,能够使顶点确定知识的相关性,是否可忽略。

 2 代码编写

本次要构建的图网络

2.1 代码实战:引入基础模块,设置运行环境----Cora_GAT.py(第1部分)

from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda

输出结果:

2.2 代码实现:读取并解析论文数据----Cora_GAT.py(第2部分)

# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])

输出:

2.3 读取并解析论文关系数据

载入论文的关系数据,将数据中用论文ID表示的关系转化成重新编号后的关系,将每篇论文当作一个顶点,论文间的引用关系作为边,这样论文的关系数据就可以用一个图结构来表示。

 计算该图结构的邻接矩阵并将其转化为无向图邻接矩阵。

2.3.1 代码实现:转化矩阵----Cora_GAT.py(第3部分)

# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T

输出:

2.4 代码实现:加工图结构的矩阵数据----Cora_GAT.py(第4部分)

# 1.4 加工图结构的矩阵数据
def normalize_adj(mx):rowsum = np.array(mx.sum(1))r_inv = np.power(rowsum,-0.5).flatten()r_inv[np.isinf(r_inv)] = 0.0r_mat_inv = diags(r_inv)return mx.dot(r_mat_inv).transpose().dot(r_mat_inv) # 兑成归一化拉普拉斯矩阵实现邻接矩阵的转化adj = normalize_adj(adj + eye(adj.shape[0])) # 对邻接矩阵进行转化对称归一化拉普拉斯矩阵转化

2.5 将数据转化为张量,并分配运算资源

将加工好的图结构矩阵数据转为PyTorch支持的张量类型,并将其分成3份,分别用来进行训练、测试和验证。

2.5.1 代码实现:将数据转化为张量,并分配运算资源----Cora_GAT.py(第5部分)

# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)

2.6 代码实现:定义Mish激活函数与图注意力层类----Cora_GAT.py(第6部分)

# 1.6 定义Mish激活函数与图注意力层类
def mish(x): # 性能优于RElu函数return x * (torch.tanh(F.softplus(x)))
# 图注意力层类
class GraphAttentionLayer(nn.Module): # 图注意力层# 初始化def __init__(self,in_features,out_features,dropout=0.6):super(GraphAttentionLayer, self).__init__()self.dropout = dropoutself.in_features = in_features # 定义输入特征维度self.out_features = out_features # 定义输出特征维度self.W = nn.Parameter(torch.zeros(size=(in_features,out_features)))nn.init.xavier_uniform_(self.W) # 初始化全连接权重self.a = nn.Parameter(torch.zeros(size=(2 * out_features,1)))nn.init.xavier_uniform_(self.a) # 初始化注意力权重def forward(self,input,adj):h = torch.mm(input,self.W) # 全连接处理N = h.size()[0]# 对全连接后的特征数据分别进行基于批次维度和特征维度的复制,并将复制结果连接在一起。# 这种操作使得顶点中的特征数据进行了充分的排列组合,结果中的每行信息都包含两个顶点特征。接下来的注意力机制便是基于每对顶点特征进行计算的。a_input = torch.cat([h.repeat(1,N).view(N * N ,-1),h.repeat(N,1)],dim=1).view(N,-1,2 * self.out_features) # 主要功能将顶点特征两两搭配,连接在一起,生成数据形状[N,N,2 * self.out_features]e = mish(torch.matmul(a_input,self.a).squeeze(2)) # 计算注意力zero_vec = -9e15 * torch.ones_like(e) # 初始化最小值:该值用于填充被过滤掉的特征对象atenion。如果在过滤时,直接对过滤排的特征赋值为0,那么模型会无法收敛。attention = torch.where(adj>0,e,zero_vec) # 过滤注意力 :按照邻接矩阵中大于0的边对注意力结果进行过滤,使注意力按照图中的顶点配对的范围进行计算。attention = F.softmax(attention,dim=1) # 对注意力分数进行归一化:使用F.Sofmax()函数对最终的注意力机制进行归一化,得到注意力分数(总和为1)。attention = F.dropout(attention,self.dropout,training=self.training)h_prime = torch.matmul(attention,h) # 使用注意力处理特征:将最终的注意力作用到全连接的结果上以完成计算。return mish(h_prime)

2.7 代码实现:搭建图注意力模型----Cora_GAT.py(第7部分)

# 1.7 搭建图注意力模型
class GAT(nn.Module):# 图注意力模型类def __init__(self,nfeat,nclasses,nhid,dropout,nheads): # 图注意力模型类的初始化方法,支持多套注意力机制同时运算,其参数nheads用于指定注意力的计算套数。super(GAT, self).__init__()# 注意力层self.attentions = [GraphAttentionLayer(nfeat,nhid,dropout) for _ in range(nheads)] # 按照指定的注意力套数生成多套注意力层for i , attention in enumerate(self.attentions): # 将注意力层添加到模型self.add_module('attention_{}'.format(i),attention)# 输出层self.out_att = GraphAttentionLayer(nhid * nheads,nclasses,dropout)def forward(self,x,adj): # 定义正向传播方法x = torch.cat([att(x, adj) for att in self.attentions], dim=1)return self.out_att(x, adj)n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433def accuracy(output,y): # 定义函数计算准确率return (output.argmax(1) == y).type(torch.float32).mean().item()### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
def step(): # 定义函数来训练模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入model.train()optimizer.zero_grad()output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失loss = F.cross_entropy(output[idx_train],labels[idx_train])acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率loss.backward()optimizer.step()return loss.item(),accdef evaluate(idx): # 定义函数来评估模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入model.eval()output = model(features, adj) # 将全部数据载入模型,用指定索引评估模型结果loss = F.cross_entropy(output[idx], labels[idx]).item()return loss, accuracy(output[idx], labels[idx])

2.8 Ranger优化器

图卷积神经网络的层数不宜过多,一般在3层左右即可。本例将实现一个3层的图卷积神经网络,每层的维度变化如图9-15所示。

使用循环语句训练模型,并将模型结果可视化。

2.8.1 代码实现:用Ranger优化器训练模型并可视化结果----Cora_GAT.py(第8部分)

# 1.8 使用Ranger优化器训练模型并可视化
model = GAT(n_features, n_labels, 16,0.1,8).to(device) # 向GAT传入的后3个参数分别代表输出维度(16)、Dropout的丢弃率(0.1)、注意力的计算套数(8)from tqdm import tqdm
from Cora_ranger import * # 引入Ranger优化器
optimizer = Ranger(model.parameters()) # 使用Ranger优化器# 训练模型
epochs = 1000
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):tl,ta = step()train_loss = train_loss + [tl]train_acc = train_acc + [ta]if (i+1) % print_steps == 0 or i == 0:tl,ta = evaluate(idx_train)vl,va = evaluate(idx_val)val_loss = val_loss + [vl]val_acc = val_acc + [va]print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)

2.7 程序输出汇总

2.7.1 训练过程 

2.7.2 训练结果

3 代码汇总

3.1 Cora_GAT.py

from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T# 1.4 加工图结构的矩阵数据
def normalize_adj(mx):rowsum = np.array(mx.sum(1))r_inv = np.power(rowsum,-0.5).flatten()r_inv[np.isinf(r_inv)] = 0.0r_mat_inv = diags(r_inv)return mx.dot(r_mat_inv).transpose().dot(r_mat_inv) # 兑成归一化拉普拉斯矩阵实现邻接矩阵的转化adj = normalize_adj(adj + eye(adj.shape[0])) # 对邻接矩阵进行转化对称归一化拉普拉斯矩阵转化# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)# 1.6 定义Mish激活函数与图注意力层类
def mish(x): # 性能优于RElu函数return x * (torch.tanh(F.softplus(x)))
# 图注意力层类
class GraphAttentionLayer(nn.Module): # 图注意力层# 初始化def __init__(self,in_features,out_features,dropout=0.6):super(GraphAttentionLayer, self).__init__()self.dropout = dropoutself.in_features = in_features # 定义输入特征维度self.out_features = out_features # 定义输出特征维度self.W = nn.Parameter(torch.zeros(size=(in_features,out_features)))nn.init.xavier_uniform_(self.W) # 初始化全连接权重self.a = nn.Parameter(torch.zeros(size=(2 * out_features,1)))nn.init.xavier_uniform_(self.a) # 初始化注意力权重def forward(self,input,adj):h = torch.mm(input,self.W) # 全连接处理N = h.size()[0]# 对全连接后的特征数据分别进行基于批次维度和特征维度的复制,并将复制结果连接在一起。# 这种操作使得顶点中的特征数据进行了充分的排列组合,结果中的每行信息都包含两个顶点特征。接下来的注意力机制便是基于每对顶点特征进行计算的。a_input = torch.cat([h.repeat(1,N).view(N * N ,-1),h.repeat(N,1)],dim=1).view(N,-1,2 * self.out_features) # 主要功能将顶点特征两两搭配,连接在一起,生成数据形状[N,N,2 * self.out_features]e = mish(torch.matmul(a_input,self.a).squeeze(2)) # 计算注意力zero_vec = -9e15 * torch.ones_like(e) # 初始化最小值:该值用于填充被过滤掉的特征对象atenion。如果在过滤时,直接对过滤排的特征赋值为0,那么模型会无法收敛。attention = torch.where(adj>0,e,zero_vec) # 过滤注意力 :按照邻接矩阵中大于0的边对注意力结果进行过滤,使注意力按照图中的顶点配对的范围进行计算。attention = F.softmax(attention,dim=1) # 对注意力分数进行归一化:使用F.Sofmax()函数对最终的注意力机制进行归一化,得到注意力分数(总和为1)。attention = F.dropout(attention,self.dropout,training=self.training)h_prime = torch.matmul(attention,h) # 使用注意力处理特征:将最终的注意力作用到全连接的结果上以完成计算。return mish(h_prime)# 1.7 搭建图注意力模型
class GAT(nn.Module):# 图注意力模型类def __init__(self,nfeat,nclasses,nhid,dropout,nheads): # 图注意力模型类的初始化方法,支持多套注意力机制同时运算,其参数nheads用于指定注意力的计算套数。super(GAT, self).__init__()# 注意力层self.attentions = [GraphAttentionLayer(nfeat,nhid,dropout) for _ in range(nheads)] # 按照指定的注意力套数生成多套注意力层for i , attention in enumerate(self.attentions): # 将注意力层添加到模型self.add_module('attention_{}'.format(i),attention)# 输出层self.out_att = GraphAttentionLayer(nhid * nheads,nclasses,dropout)def forward(self,x,adj): # 定义正向传播方法x = torch.cat([att(x, adj) for att in self.attentions], dim=1)return self.out_att(x, adj)n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433def accuracy(output,y): # 定义函数计算准确率return (output.argmax(1) == y).type(torch.float32).mean().item()### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
def step(): # 定义函数来训练模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入model.train()optimizer.zero_grad()output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失loss = F.cross_entropy(output[idx_train],labels[idx_train])acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率loss.backward()optimizer.step()return loss.item(),accdef evaluate(idx): # 定义函数来评估模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入model.eval()output = model(features, adj) # 将全部数据载入模型,用指定索引评估模型结果loss = F.cross_entropy(output[idx], labels[idx]).item()return loss, accuracy(output[idx], labels[idx])# 1.8 使用Ranger优化器训练模型并可视化
model = GAT(n_features, n_labels, 16,0.1,8).to(device) # 向GAT传入的后3个参数分别代表输出维度(16)、Dropout的丢弃率(0.1)、注意力的计算套数(8)from tqdm import tqdm
from Cora_ranger import * # 引入Ranger优化器
optimizer = Ranger(model.parameters()) # 使用Ranger优化器# 训练模型
epochs = 1000
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):tl,ta = step()train_loss = train_loss + [tl]train_acc = train_acc + [ta]if (i+1) % print_steps == 0 or i == 0:tl,ta = evaluate(idx_train)vl,va = evaluate(idx_val)val_loss = val_loss + [vl]val_acc = val_acc + [va]print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)

3.2 Cora_ranger.py

#Ranger deep learning optimizer - RAdam + Lookahead combined.
#https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer#Ranger has now been used to capture 12 records on the FastAI leaderboard.#This version = 9.3.19  #Credits:
#RAdam -->  https://github.com/LiyuanLucasLiu/RAdam
#Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
#Lookahead paper --> MZhang,G Hinton  https://arxiv.org/abs/1907.08610#summary of changes: 
#full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights), 
#supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
#changes 8/31/19 - fix references to *self*.N_sma_threshold; #changed eps to 1e-5 as better default than 1e-8.import math
import torch
from torch.optim.optimizer import Optimizer, required
import itertools as itclass Ranger(Optimizer):def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95,0.999), eps=1e-5, weight_decay=0):#parameter checksif not 0.0 <= alpha <= 1.0:raise ValueError(f'Invalid slow update rate: {alpha}')if not 1 <= k:raise ValueError(f'Invalid lookahead steps: {k}')if not lr > 0:raise ValueError(f'Invalid Learning Rate: {lr}')if not eps > 0:raise ValueError(f'Invalid eps: {eps}')#parameter comments:# beta1 (momentum) of .95 seems to work better than .90...#N_sma_threshold of 5 seems better in testing than 4.#In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.#prep defaults and init torch.optim basedefaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay)super().__init__(params,defaults)#adjustable thresholdself.N_sma_threshhold = N_sma_threshhold#now we can get to work...#removed as we now use step from RAdam...no need for duplicate step counting#for group in self.param_groups:#    group["step_counter"] = 0#print("group step counter init")#look ahead paramsself.alpha = alphaself.k = k #radam buffer for stateself.radam_buffer = [[None,None,None] for ind in range(10)]#self.first_run_check=0#lookahead weights#9/2/19 - lookahead param tensors have been moved to state storage.  #This should resolve issues with load/save where weights were left in GPU memory from first load, slowing down future runs.#self.slow_weights = [[p.clone().detach() for p in group['params']]#                     for group in self.param_groups]#don't use grad for lookahead weights#for w in it.chain(*self.slow_weights):#    w.requires_grad = Falsedef __setstate__(self, state):print("set state called")super(Ranger, self).__setstate__(state)def step(self, closure=None):loss = None#note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.  #Uncomment if you need to use the actual closure...#if closure is not None:#loss = closure()#Evaluate averages and grad, update param tensorsfor group in self.param_groups:for p in group['params']:if p.grad is None:continuegrad = p.grad.data.float()if grad.is_sparse:raise RuntimeError('Ranger optimizer does not support sparse gradients')p_data_fp32 = p.data.float()state = self.state[p]  #get state dict for this paramif len(state) == 0:   #if first time to run...init dictionary with our desired entries#if self.first_run_check==0:#self.first_run_check=1#print("Initializing slow buffer...should not see this at load from saved model!")state['step'] = 0state['exp_avg'] = torch.zeros_like(p_data_fp32)state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)#look ahead weight storage now in state dict state['slow_buffer'] = torch.empty_like(p.data)state['slow_buffer'].copy_(p.data)else:state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)#begin computations exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']beta1, beta2 = group['betas']#compute variance mov avgexp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)#compute mean moving avgexp_avg.mul_(beta1).add_(1 - beta1, grad)state['step'] += 1buffered = self.radam_buffer[int(state['step'] % 10)]if state['step'] == buffered[0]:N_sma, step_size = buffered[1], buffered[2]else:buffered[0] = state['step']beta2_t = beta2 ** state['step']N_sma_max = 2 / (1 - beta2) - 1N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)buffered[1] = N_smaif N_sma > self.N_sma_threshhold:step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])else:step_size = 1.0 / (1 - beta1 ** state['step'])buffered[2] = step_sizeif group['weight_decay'] != 0:p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)if N_sma > self.N_sma_threshhold:denom = exp_avg_sq.sqrt().add_(group['eps'])p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)else:p_data_fp32.add_(-step_size * group['lr'], exp_avg)p.data.copy_(p_data_fp32)#integrated look ahead...#we do it at the param level instead of group levelif state['step'] % group['k'] == 0:slow_p = state['slow_buffer'] #get access to slow param tensorslow_p.add_(self.alpha, p.data - slow_p)  #(fast weights - slow weights) * alphap.data.copy_(slow_p)  #copy interpolated weights to RAdam param tensorreturn loss

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469280.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用OC和Swift一起说说二叉树

前言&#xff1a; 一&#xff1a;在计算机科学中&#xff0c;二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”&#xff08;left subtree&#xff09;和“右子树”&#xff08;right subtree&#xff09;。二叉树常被用于实现二叉查找树和二叉堆。二&#xf…

【Pytorch神经网络理论篇】 30 图片分类模型:Inception模型

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 32 PNASNet模型:深层可分离卷积+组卷积+空洞卷积

1 PNASNet模型简介 PNASNet模型是Google公司的AutoML架构自动搜索所产生的模型&#xff0c;它使用渐进式网络架构搜索技术&#xff0c;并通过迭代自学习的方式&#xff0c;来寻找最优网络结构。即用机器来设计机器学习算法&#xff0c;使得它能够更好地服务于用户提供的数据。该…

s5k5e2ya MIPI 摄像头调试

1、驱动移植的话按照我之前的文章来做 驱动里面注意是几路的lane,一般mipi的话是差分信号&#xff0c;2路和4路是比较常见的。2、mipi波形 很明显上面的波形是不正确的。dp dn有一个都成了正弦波了。 首先&#xff0c;我们要找一下正确的波形 正确的波形应该是DP和DN不会同时…

【Pytorch神经网络实战案例】23 使用ImagNet的预训练模型识别图片内容

1 案例基本工具概述 1.1 数据集简介 Imagenet数据集共有1000个类别&#xff0c;表明该数据集上的预训练模型最多可以输出1000种不同的分类结果。 Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域&#xff0c;关于图像分类、定位、检测等研究工作大多基于此数据…

杂谈转载

一、什么是运行时&#xff08;Runtime&#xff09;? 运行时是苹果提供的纯C语言的开发库&#xff08;运行时是一种非常牛逼、开发中经常用到的底层技术&#xff09;二、运行时的作用&#xff1f; 能获得某个类的所有成员变量能获得某个类的所有属性能获得某个类的所有方法交换…

【Pytorch神经网络实战案例】24 基于迁移学习识别多种鸟类(CUB-200数据集)

1 迁移学习 在实际开发中&#xff0c;常会使用迁移学习将预训练模型中的特征提取能力转移到自己的模型中。 1.1 迁移学习定义 迁移学习指将在一个任务上训练完成的模型进行简单的修改&#xff0c;再用另一个任务的数据继续训练&#xff0c;使之能够完成新的任务。 1.1.1 迁…

【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

arduino i2c 如何写16位寄存器_树莓派3B开发Go语言(二)寄存器版本GPIO

作者&#xff1a;爪爪熊链接&#xff1a;https://www.jianshu.com/p/0495c0554a63來源&#xff1a;简书之前将go语言的运行环境给搭建起来了&#xff0c;但是没有开始真正的试试Go 语言操作树莓派硬件的效果。一、树莓派3B硬件介绍树莓派3B采用了博通的BCM2837方案&#xff0c;…

【Pytorch神经网络实战案例】25 (带数据增强)基于迁移学习识别多种鸟类(CUB-200数据集)

1 数据增强 在目前分类效果最好的EficientNet系列模型中&#xff0c;EfficientNet-B7版本的模型就是使用随机数据增强方法训练而成的。 RandAugment方法也是目前主流的数据增强方法&#xff0c;用RandAugment方法进行训练&#xff0c;会使模型的精度得到提升。 2 RandAugment…

diskgenius 数据迁移_U盘格式化后数据恢复免费方法教程

U盘里的数据一般都很重要&#xff0c;比如论文或者办公文件&#xff0c;而有时候我们会被病毒或者误操作把U盘给格式化了&#xff0c;这时候要怎么恢复U盘里的数据呢&#xff0c;只有一个办法&#xff0c;就是用U盘数据恢复软件&#xff0c;但网上此类软件虽然很多&#xff0c;…

【Pytorch神经网络理论篇】 34 样本均衡+分类模型常见损失函数

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

安卓 camera 调用流程_安卓如何做出微信那样的界面仿微信“我”的界面1/5

本系列目标通过安卓编程仿写微信“我”的界面,让大家也能做出类似微信界面.效果图如下:本文目标做出页面顶部的相机部分(其他部分在后续文章中逐步分享).效果图如下:实现方案通过截图工具或者下载一张照相机照片,放到工程的src/main/res/drawable目录下,命名为camera.png添加一…

【Pytorch神经网络实战案例】26 MaskR-CNN内置模型实现目标检测

1 Pytorch中的目标检测内置模型 在torchvision库下的modelsldetecton目录中&#xff0c;找到__int__.py文件。该文件中存放着可以导出的PyTorch内置的目标检测模型。 2 MaskR-CNN内置模型实现目标检测 2.1 代码逻辑简述 将COCO2017数据集上的预训练模型maskrcnm_resnet50_fp…

【Pytorch神经网络实战案例】27 MaskR-CNN内置模型实现语义分割

1 PyTorch中语义分割的内置模型 在torchvision库下的models\segmentation目录中&#xff0c;找到segmentation.Py文件。该文件中存放着PyTorch内置的语义分割模型。 2 MaskR-CNN内置模型实现语义分割 2.1 代码逻辑简述 将COCO 2017数据集上的预训练模型dceplabv3_resnet101…

怎么查看电脑内存和配置_电脑内存不足处理方法,电脑卡死处理方法。

超过10万人正在关注赶快来关注吧&#xff0c;这里有你想找的热点资讯&#xff0c;这里有你想要的各种资料&#xff0c;还有海量的资源&#xff0c;还在等什么。快来关注&#xff0c;大佬带你开车。电脑系统经常奔溃&#xff0c;软件经常运行不了&#xff0c;开不了机&#xff0…

前端开源项目周报0307

由OpenDigg 出品的前端开源项目周报第十一期来啦。我们的前端开源周报集合了OpenDigg一周来新收录的优质的前端开源项目&#xff0c;方便前端开发人员便捷的找到自己需要的项目工具等。 react-trend 简单优雅的光线 react-progressive-web-app 优化ProgressiveWeb应用开发 pull…

【Pytorch神经网络理论篇】 35 GaitSet模型:步态识别思路+水平金字塔池化+三元损失

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

win7分区软件_神奇的工作室win7旗舰版重装系统连不上网怎么解决

深度技术win7系统下载有的时刻我们的电脑安装、重装了win10操作系统之后有的小伙伴们就发现了自己的电脑连不上网了。对于这种问题小编以为可能是我们的电脑在安装系统的过程中泛起了一些内部组件的冲突或者是由于网卡驱动没有安装好导致的&#xff0c;可以通过重新安装、重装驱…