使用ITM机制实现调试stm32单片机,实现printf与scanf。
- ITM简介
ITM机制是一种调试机制,是新一代调试方式,在这之前,有一种比较出名的调试方式,称为半主机(semihosting)方式。
在pc上编写过C语言的人都知道,printf可以向控制台输出,scanf可以从控制台获取输入,这里的printf/scanf都是标准库函数,利用操作系统的这些函数,我们可以很方便的调试程序。在嵌入式设备上(如stm32单片机平台上)开发工具(如MDK/IAR)也都提供了标准库函,自然也提供了printf/scanf函数,那么这些函数是否可以使用呢? 问题来了,printf向哪里输出呢?并且大部分情况下,也没有键盘,又如何使用scanf实现输入呢?
我们都知道,嵌入式设备一般的使用仿真器,如常见Jlink/ulink,可以实现烧录,单步,下断点,查看变量,等等。仿真器将PC机和单片机连接器来。聪明的设计者们就在考虑是否可以借助仿真器,使得单片机可以借助PC机的屏幕以及PC机的键盘实现printf的输出和scanf的按键获取。
也就是说,如下的hello,world程序
#include <stdio.h>
int main()
{
//硬件初始化
//…
printf(“hello, world”);
for(;😉;
}
这个程序烧录到单片机中后,仿真器连接接单片机与PC,开始在线调试后,那么这个程序会将"Hello, world"输出到PC机上,在开发工具(MDK/IAR等)的某个窗口中显示。
这就相当于,单片机借助了PC机的显示/输入设备实现了自己的输出/输入。这种方式无疑可以方便程序开发者调试。
这种机制有多种实现方式,比较著名的就是semihosting(半主机机制)和ITM机制。
ITM是ARM在推出semihosting之后推出的新一代调试机制。现在我们来尝试一下这种方式调试。
- stm32使用ITM调试
MCU:stm32f207VG
仿真器:Jlink V8
IDE:MDK4.50
2.1 硬件连接
ITM机制要求使用SWD方式接口,并需要连接SWO线,一般的四线SWD方式(VCC SDCLK,SDIO,GND)是不行的。标准的20针JTAG接口是可以的,只需要在MDK里设置使用SWD接口即可。
2.2 添加重定向文件
将下面的文件保存成任意C文件,并添加到工程中。这里对这个文件简单说明一下,要知道我们的程序是在单片机上运行的,为什么printf可以输出到MDK窗口里去呢?这是因为 标准库中的printf实际上调用 fputc实现输出,所以我们需要自己编写一个fputc函数,这个函数会借助ITM(类似于USART)提供的寄存器,实现数据的发送,仿真器会收到这些数据,并发往PC机。
实际上,如果你的单片机和一块LCD连接,那么你只需要重新实现fputc函数,并向LCD上输出即可,那么你调用printf时就会输出到LCD上了。这中机制,就是所谓的重定向机制。
#include <stdio.h>
#define ITM_Port8(n) (((volatile unsigned char )(0xE0000000+4n)))
#define ITM_Port16(n) (((volatile unsigned short*)(0xE0000000+4n)))
#define ITM_Port32(n) (((volatile unsigned long )(0xE0000000+4n)))
#define DEMCR (*((volatile unsigned long *)(0xE000EDFC)))
#define TRCENA 0x01000000
struct __FILE { int handle; /* Add whatever you need here */ };
FILE __stdout;
FILE __stdin;
int fputc(int ch, FILE *f)
{
if (DEMCR & TRCENA)
{
while (ITM_Port32(0) == 0);
ITM_Port8(0) = ch;
}
return(ch);
}
2.2 配置JLINK的初始化配置文件
将下面文件放置在你的工程下,并取任意名称,这里笔者取名为 STM32DBG.ini
/*****************************************************************************/
/ STM32DBG.INI: STM32 Debugger Initialization File /
/*****************************************************************************/
// <<< Use Configuration Wizard in Context Menu >>> //
/*****************************************************************************/
/ This file is part of the uVision/ARM development tools. /
/ Copyright © 2005-2007 Keil Software. All rights reserved. /
/ This software may only be used under the terms of a valid, current, /
/ end user licence from KEIL for a compatible version of KEIL software /
/ development tools. Nothing else gives you the right to use this software. /
/*****************************************************************************/
FUNC void DebugSetup (void) {
// Debug MCU Configuration
// <o1.0> DBG_SLEEP Debug Sleep Mode
// <o1.1> DBG_STOP Debug Stop Mode
// <o1.2> DBG_STANDBY Debug Standby Mode
// <o1.5> TRACE_IOEN Trace I/O Enable
// <o1.6…7> TRACE_MODE Trace Mode
// <0=> Asynchronous
// <1=> Synchronous: TRACEDATA Size 1
// <2=> Synchronous: TRACEDATA Size 2
// <3=> Synchronous: TRACEDATA Size 4
// <o1.8> DBG_IWDG_STOP Independant Watchdog Stopped when Core is halted
// <o1.9> DBG_WWDG_STOP Window Watchdog Stopped when Core is halted
// <o1.10> DBG_TIM1_STOP Timer 1 Stopped when Core is halted
// <o1.11> DBG_TIM2_STOP Timer 2 Stopped when Core is halted
// <o1.12> DBG_TIM3_STOP Timer 3 Stopped when Core is halted
// <o1.13> DBG_TIM4_STOP Timer 4 Stopped when Core is halted
// <o1.14> DBG_CAN_STOP CAN Stopped when Core is halted
//
_WDWORD(0xE0042004, 0x00000027); // DBGMCU_CR
_WDWORD(0xE000ED08, 0x20000000); // Setup Vector Table Offset Register
}
DebugSetup(); // Debugger Setup
这里对这个文件做简单的解释,
_WDWORD(0xE0042004, 0x00000027); // DBGMCU_CR
这一句表示想 0xE0042004地址处写入 0x000000027,这个寄存器是各个位表示的含义在注释中给出了详细的解释。 0x27即表示
BIT0 DBG_SLEEP
BIT1 DBG_STOP
BIT2 DBG_STANDBY
BIT5 TRACE_IOEN
注意,要使用ITM机制,必须要打开BIT5。
打开MDK工程,按照下图修改。
2.3 MDK中对JLINK的配置
下图中注意两点
1). 这里的CoreClock是120M,因为笔者使用的是stm32F207VG这款芯片,并且时钟配置为120M,所以这里填入120M,如果你使用stm32F10x,时钟配置成72M,那么这里需要填入72M。即需要跟实际情况保持一致。
2). 最后一定要将 0处打勾,并将其他bit位上的勾去掉,最好与此图保持一致,除CoreClock外。
2.4 烧录程序,并启动调试。可以看到,笔者在程序源码中插入了一句printf语句输出,然后按照下图,就可以看到程序的输出了。
- 综合版本使用scanf和printf
3.1 添加retarget文件
将如下代码保存成retarget.c,然后加入到工程中。
#pragma import(__use_no_semihosting_swi)
struct __FILE { int handle; /* Add whatever you need here */ };
FILE __stdout;
FILE __stdin;
int fputc(int ch, FILE *f)
{
return ITM_SendChar(ch);
}
volatile int32_t ITM_RxBuffer;
int fgetc(FILE *f)
{
while (ITM_CheckChar() != 1) __NOP();
return (ITM_ReceiveChar());
}
int ferror(FILE f)
{
/ Your implementation of ferror */
return EOF;
}
void _ttywrch(int c)
{
fputc(c, 0);
}
int __backspace()
{
return 0;
}
void _sys_exit(int return_code)
{
label:
goto label; /* endless loop */
}
3.2 编译运行
编译,烧录,运行,打开Debug (printf) viewer,就可以看到输入,参看下图
这里对retarget.c文件做几点说明.
1). 上面的代码实际是在X:\Keil\ARM\Startup\Retarget.c上修改而成的,scanf依赖的函数共有两个,fgetc和__backspace都需要实现,如果缺少__backespace函数,则scanf胡无法从Debug Viewer Dialog 窗口获取输入。另外上面提供的代码只是个demo,用于演示效果,用于生产时应该处理的更完善一些。见参考文献[1]
2). 函数ITM_SendChar,ITM_CheckChar,ITM_ReceiveChar在库文件CMSIS\Include\core_cm3.h中。
- 查看函数的符号引用关系,可以通过生成详细的map文件来查看。命令行增加 --verbose --list rtt.map选项即可生成名为rtt.map的文件。
- ITM与RTT结合(待实现)
grissiom 写道:
忽然想到,或许可以把这个半主机做成 device,然后 rt_console_set_device(“semi”) 就可以直接用半主机做 finsh/rt_kprintf 了…… 不知可行不可行……
prife: ITM的接收不知道是否支持中断,目前接收字符使用是轮询方式。如果是中断才有意义。这样可以把ITM设备做成一个 rtt 的device了,让finsh跑在 Debug printf Viewer窗口上。以后只要接一个jtag/SWD口就可以调试了,不用再接串口线了
参考文献
[1] MDK help. Indirect semihosting C library function dependencies
[2] MDK help ARM Development Tools.
Debugger Adapter User’s Guides
J-Link/J-Trace User’s Guide
Libraries and Floating Point Support Referencee
Libraries and Floating Point Support Guide
Linker Reference Guide