- 目录
- 前言:
- 1、mapTask并行度的决定机制
- 2、ReduceTask并行度的决定
- 总结:
目录
前言:
MapTask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度。那么,MapTask并行实例是否越多越好呢?其并行度又是如何决定呢?
1、mapTask并行度的决定机制
一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:
将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理。(注意切片和分块的区别)
这段逻辑及形成的切片规划描述文件,由FileInputFormat实现类的getSplits()方法完成,其过程如下图:
FileInputFormat切片机制
1、切片定义在InputFormat类中的getSplit()方法
2、FileInputFormat中默认的切片机制:
a) 简单地按照文件的内容长度进行切片
b) 切片大小,默认等于block大小
c) 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
比如待处理数据有两个文件:
file1.txt 320M
file2.txt 10M
经过FileInputFormat的切片机制运算后,形成的切片信息如下:
file1.txt.split1– 0~128
file1.txt.split2– 128~256
file1.txt.split3– 256~320
file2.txt.split1– 0~10M
FileInputFormat中切片的大小的参数配置(了解)
通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize)); 切片主要由这几个值来运算决定
minsize:默认值:1 配置参数: mapreduce.input.fileinputformat.split.minsize
maxsize:默认值:Long.MAXValue 配置参数:mapreduce.input.fileinputformat.split.maxsize
blocksize
因此,默认情况下,切片大小=blocksize
maxsize(切片最大值):
参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值
minsize (切片最小值):
参数调的比blockSize大,则可以让切片变得比blocksize还大
选择并发数的影响因素:
1、运算节点的硬件配置
2、运算任务的类型:CPU密集型还是IO密集型
3、运算任务的数据量
2、ReduceTask并行度的决定
reducetask的并行度同样影响整个job的执行并发度和执行效率,但与maptask的并发数由切片数决定不同,Reducetask数量的决定是可以直接手动设置:
//默认值是1,手动设置为4
job.setNumReduceTasks(4);
如果数据分布不均匀,就有可能在reduce阶段产生数据倾斜
注意: reducetask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个reducetask
尽量不要运行太多的reduce task。对大多数job来说,最好reduce的个数最多和集群中的reduce持平,或者比集群的 reduce slots小。这个对于小集群而言,尤其重要。
总结:
MapTask并行度由两种情况:
1、当一个文件比较大时,每次切片128M为一个MapTask的任务量。被切分多少片就能由多少个MapTask。
2、当有多个小文件时,每个小文件可以看做是一个MapTask的任务量,有多少个小文件就有多少个MapTask。
PS:当然默认切片的大小可以自定义设置。
ReduceTask并行度可以在代码中手动设置。