【机器学习】交叉验证筛选参数K值和weight

交叉验证

在这里插入图片描述

导包

import numpy as npfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn import datasets#model_selection :模型选择
# cross_val_score: 交叉 ,validation:验证(测试)
#交叉验证
from sklearn.model_selection import cross_val_score

读取datasets中鸢尾花(yuan1wei3hua)数据

X,y= datasets.load_iris(True)
X.shape

(150, 4)

一般情况不会超过数据的开方数

#参考
150**0.5
#K 选择 1~13

12.24744871391589

knn = KNeighborsClassifier()score = cross_val_score(knn,X,y,scoring='balanced_accuracy',cv=11)
score.mean()

0.968181818181818

应用cross_val_score筛选 n_neighbors k值

errors =[]
for k in range(1,14):knn = KNeighborsClassifier(n_neighbors=k)score = cross_val_score(knn,X,y, scoring='accuracy',cv = 6).mean()#误差越小 说明K选择越合适 越好errors.append(1-score)import matplotlib.pyplot as plt
%matplotlib inline#k = 11时 误差最小 说明最合适的k值
plt.plot(np.arange(1,14),errors)

[<matplotlib.lines.Line2D at 0x17ece9ff0b8>]
在这里插入图片描述

应用cross_val_score筛选 weights

weights =['uniform','distance']for w  in weights:knn  = KNeighborsClassifier(n_neighbors = 11,weights= w)print(w,cross_val_score(knn,X,y, scoring='accuracy',cv = 6).mean())

uniform 0.98070987654321
distance 0.9799382716049383

模型如何调参的,参数调节

result = {}
for k in range(1,14):for w  in weights:knn = KNeighborsClassifier(n_neighbors=k,weights=w)sm = cross_val_score(knn,X,y,scoring='accuracy',cv=6).mean()result[w+str(k)] =sma =result.values()
list(a)np.array(list(a)).argmax()

20

list(result)[20]

‘uniform11’

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/456136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手机只能签荣耀!最忠诚代言人胡歌喊你去天猫超品日

在你心中&#xff0c;男神胡歌是什么样子&#xff1f;“御剑乘风来&#xff0c;除魔天地间。”也许是《仙剑奇侠传》里飞扬跋扈、青春不羁的侠客李逍遥。“遍识天下英雄路&#xff0c;俯首江左有梅郎。”也许是《琅铘榜》中才智冠天下&#xff0c;远在江湖却名动帝辇的麒麟才子…

欧式距离与曼哈顿距离

欧式距离&#xff0c;其实就是应用勾股定理计算两个点的直线距离 二维空间的公式 其中&#xff0c; 为点与点之间的欧氏距离&#xff1b;为点到原点的欧氏距离。 三维空间的公式 n维空间的公式 曼哈顿距离&#xff0c;就是表示两个点在标准坐标系上的绝对轴距之和&#xff1a…

在maven pom.xml中加载不同的properties ,如localhost 和 dev master等jdbc.properties 中的链接不一样...

【参考】&#xff1a;maven pom.xml加载不同properties配置[转] 首先 看看效果&#xff1a; 点开我们项目中的Maven projects 后&#xff0c;会发现右侧 我们profile有个可勾选选项。默认勾选localhost。localhost对应项目启动后&#xff0c;会加载配置左侧localhost文件夹下面…

python安装以及版本检测

Windows 安装 Python 3 目前Python有两个大版本&#xff0c;分别是 2.X 和 3.X &#xff0c;我们的教程基于最新版本 3.6.1 首先我们需要获取Python的安装包&#xff0c;可以从官网获取&#xff0c;如果你因为没有VPN工具而无法访问官网的话&#xff0c;我已经将它放在网盘了&…

【机器学习】梯度下降原理

import numpy as np import matplotlib.pyplot as plt %matplotlib inlinef lambda x :(x-3)**22.5*x-7.5 f2 lambda x :-(x-3)**22.5*x-7.5求解导数 导数为0 取最小值 x np.linspace(-2,5,100) y f(x) plt.plot(x,y)梯度下降求最小值 #导数函数 d lambda x:2*(x-3)*12.…

C语言的面向对象设计-对X264/FFMPEG架构探讨

本文贡献给ZSVC开源社区&#xff08;https://sourceforge.net/projects/zsvc/&#xff09;&#xff0c;他们是来自于中国各高校的年轻学子&#xff0c;是满怀激情与梦想的人&#xff0c;他们将用自己的勤劳与智慧在世界开源软件领域为中国留下脚步&#xff0c;该社区提供大量视…

【机器学习】自己手写实现线性回归,梯度下降 原理

导包 import numpy as npimport matplotlib.pyplot as plt %matplotlib inlinefrom sklearn.linear_model import LinearRegression创建数据 X np.linspace(2,10,20).reshape(-1,1)# f(x) wx b y np.random.randint(1,6,size 1)*X np.random.randint(-5,5,size 1)# 噪…

跨站的艺术-XSS Fuzzing 的技巧

作者 | 张祖优(Fooying) 腾讯云 云鼎实验室 对于XSS的漏洞挖掘过程&#xff0c;其实就是一个使用Payload不断测试和调整再测试的过程&#xff0c;这个过程我们把它叫做Fuzzing&#xff1b;同样是Fuzzing&#xff0c;有些人挖洞比较高效&#xff0c;有些人却不那么容易挖出漏洞…

H.264/AVC视频压缩编码标准的新进展

H .264/AVC是由ISO/IEC与ITU-T组成的联合视频组(JVT)制定的新一代视频压缩编码标准&#xff0c;于2003年5月完成制订。相对于先前的标准&#xff0c;H.264/AVC无论在压缩效率、还是在网络适应性方面都有明显的提高&#xff0c;因此&#xff0c;业界普遍预测其将在未来的视频应用…

python注释及语句分类

注释 注释就是&#xff1a;注解&#xff0c;解释。 主要用于在代码中给代码标识出相关的文字提示(提高代码的可读性) 或 调试程序。Python中注释分为两类&#xff1a; 1.单行注释 &#xff1a; 单行注释以 # 号开头&#xff0c;在当前行内&#xff0c;# 号后面的内容就是注释…

【机器学习】回归误差:MSE、RMSE、MAE、R2、Adjusted R2 +方差、协方差、标准差(标准偏差/均方差)、均方误差、均方根误差(标准误差)、均方根解释

我们通常采用MSE、RMSE、MAE、R2来评价回归预测算法。 1、均方误差&#xff1a;MSE&#xff08;Mean Squared Error&#xff09; 其中&#xff0c;为测试集上真实值-预测值。 def rms(y_test, y): return sp.mean((y_test - y) ** 2) 2、均方根误差&#xff1a;RMSE&#xff…

大院大所合作对接会7天倒计时!亮点抢先看

为什么80%的码农都做不了架构师&#xff1f;>>> 推动产业特色发展&#xff0c;提升企业自主创新能力&#xff0c;加快成果转化落地&#xff0c;继江苏发展大会之后&#xff0c;围绕“聚力创新”&#xff0c;7月5日-6日&#xff0c;中国江苏大院大所合作对接会暨第六…

通过取父级for循环的i来理解闭包,iife,匿名函数

在使用for循环的时候&#xff0c;假如需要在循环体中添加一个匿名函数处理其他的事情&#xff0c;那么&#xff0c;在这个匿名函数内&#xff0c;如果需要用到对应的i&#xff0c;因为闭包的缘故&#xff0c;循环体循环结束后才返回i&#xff0c;所以i最终为最后一次的数值。闭…

H.264将普及 视频编码讲坛之H.264前世今生

随着HDTV等高清资源的兴起&#xff0c;H.264这个规范频频出现在我们眼前&#xff0c;HD-DVD和蓝光DVD均计划采用这一标准进行节目制作。而且自2005年下半年以来&#xff0c;无论是NVIDIA还是ATI都把支持H.264硬件解码加速作为自己最值得夸耀的视频技术。而数码播放器领域也吹来…

【机器学习】岭回归

import numpy as npimport matplotlib.pyplot as plt %matplotlib inlinefrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import mean_squared_error,r2_score from sklearn import datasets# CV crosss validation &#xff1a;交叉验证 from skl…

Keepalived 添加脚本配置监控haproxy方案

作者&#xff1a;风过无痕-唐出处&#xff1a;http://www.cnblogs.com/tangyanbo/ 上一篇文章已经讲到了keepalived实现双机热备&#xff0c;且遗留了一个问题 master的网络不通的时候&#xff0c;可以立即切换到slave&#xff0c;但是如果只是master上的应用出现问题的时候&am…

H.264编解码标准的核心技术(提供相关流程图)

最近在学习H.264编解码知识&#xff0c;上网搜了不少资料看&#xff0c;发现大多数中文资料中都缺少相应的图片&#xff0c;例如编解码流程图、编码模板等&#xff0c;这对加深理解是很有帮助 的。木有办法&#xff0c;只好回去潜心阅读《H.264_MPEG-4_Part_10_White_Paper》&a…

【机器学习】总结:线性回归求解中梯度下降法与最小二乘法的比较

在线性回归算法求解中&#xff0c;常用的是最小二乘法与梯度下降法&#xff0c;其中梯度下降法是最小二乘法求解方法的优化&#xff0c;但这并不说明梯度下降法好于最小二乘法&#xff0c;实际应用过程中&#xff0c;二者各有特点&#xff0c;需结合实际案例具体分析。 最后有…

struts2学习(3)struts2核心知识II

一、struts.xml配置&#xff1a;                                                   1.分模块配置方法&#xff1a; 比如某个系统多个模块&#xff0c;我们把资产管理模块和车辆管理模块&#xff0c;分开&#xff0c;在总…

【机器学习】逻辑斯蒂回归概率计算和手动计算对比

二分类&#xff0c;逻辑斯蒂回归概率计算 import numpy as np from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_splitX,y datasets.load_iris(True)cond y!2X X[cond] y y[cond]resul…