The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN
Sample Output
1
3
0
KMP板子题
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>using namespace std;
void kmp_pre(char x[],int m,int next[]) {int i,j;j=next[0]=-1;i=0;while(i<m) {while(-1!=j && x[i]!=x[j])j=next[j];next[++i]=++j;}
}
int next[1000010];
int KMP_Count(char x[],int m,char y[],int n) { //x 是模式串,y 是主串int i,j;int ans=0;
//preKMP(x,m,next);kmp_pre(x,m,next);i=j=0;while(i<n) {while(-1!=j && y[i]!=x[j])j=next[j];i++;j++;if(j>=m) {ans++;j=next[j];}}return ans;
}char a[10005];
char b[1000005];
int main() {int T;cin>>T;while(T--) {scanf("%s",a);scanf("%s",b);printf("%d\n",KMP_Count(a,strlen(a),b,strlen(b)));}return 0;
}