y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%).
(1) 建立线性模型:
① 自己编写函数:
> library(openxlsx)
> data = read.xlsx("22_data.xlsx",sheet = 1)
> x = data[,-c(1,2)]
> x = cbind(rep(1,17),x)
> x_mat = as.matrix(x)
> y =matrix(data[,2],ncol = 1)
> res = solve(t(x_mat)%*%x_mat)%*%t(x_mat)%*%y
> res[,1]
rep(1, 17) 19412.8597818
X1 0.2679605
X2 -0.2874013
X3 -297.3653736
所以各参数的估计值分别为
② lm函数
> lm(y~x_mat)Call:
lm(formula = y ~ x_mat)Coefficients:(Intercept) x_matrep(1, 17) x_matX1
19412.859781545 NA 0.267960511 x_matX2 x_matX3 -0.287401287 -297.365373557
于是各参数的估计值分别为
这两个方法的结果是一样的。
(2)要求实验报告中画出矩阵散点图,给出参数的点估计、区间估计、t检验值、判定系数和模型F检验的方差分析表
绘制矩阵散点图。
library(graphics) pairs(data[,-1]pch = 21,bg = c('red','green3','blue')) # pch参数是控制点的形状,bg是控制点的颜色
下面代码给出参数的点估计,t检验值,判定系数
> summary(lm(y~x_mat+1))Call: lm(formula = y ~ x_mat + 1) #调用Residuals: #残差统计量,残差第一四分位数(1Q)和第三分位数(3Q)有大约相同的幅度,意味着有较对称的钟形分布Min 1Q Median 3Q Max -4397.9 -1102.4 153.8 1184.4 2934.6 Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 1.941e+04 3.524e+04 0.551 0.591 x_matrep(1, 17) NA NA NA NA x_matX1 2.680e-01 4.466e-02 6.000 4.45e-05 *** x_matX2 -2.874e-01 1.668e-01 -1.723 0.109 x_matX3 -2.974e+02 3.688e+02 -0.806 0.435 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#标记为Estimate的列包含由最小二乘法计算出来的估计回归系数。
#标记为Std.Error的列是估计的回归系数的标准误差。
#从理论上说,如果一个变量的系数是0,那么该变量将毫无贡献。然而,这里显示的系数只是估计,它们不会正好为0.
#因此,我们不禁会问:从统计的角度而言,真正的系数为0的可能性有多大?这是t统计量和P值的目的,在汇总中被标记为t value和Pr(>|t|) #P值估计系数不显著的可能性,有较大P值的变量是可以从模型中移除的候选变量
Residual standard error: 2013 on 13 degrees of freedom Multiple R-squared: 0.9982, Adjusted R-squared: 0.9977 F-statistic: 2348 on 3 and 13 DF, p-value: < 2.2e-16
#Residual standard error 表示残差的标准差,F-statistic 表示F的统计量
区间估计?方差分析表?
(3)保留模型中线性关系显著的预测变量确定最后的模型,并利用R软件中的"predict"语句预测2017年的税收收入
根据回归分析结果,只有变量X1具有显著性。所以模型中仅保留变量X1。
构造模型:
x_mat = cbind(rep(1,17),data[,3]) y = data[,2] res = lm(y~x_mat) res > resCall: lm(formula = y ~ x_mat)Coefficients: (Intercept) x_mat1 x_mat2 -6213.0189 NA 0.1915
该模型为:Y = -6213.0189 + 0.1915 X1
接下来预测2017年的税收收入,先根据数据data对 t 和 y 之间的关系进行回归分析
t = data[,1] y = data[,2] res = lm(y~t) res> resCall: lm(formula = y ~ t)Coefficients: (Intercept) t -16428607 8213
所以 t 与 y 的关系为:y = -16428607 + 8213 t
预测 2017 年的税收收入:
> newdata = data.frame(t = 2017) > pre = predict(res,newdata,interval = "prediction",level = 0.95) > prefit lwr upr 1 136337.8 116018.1 156657.4