open cv学习 (十)图形检测

图形检测

demo1
# 绘制几何图像的轮廓
import cv2img = cv2.imread("./shape1.png")gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 将图像二值化
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 检测图像中的所有轮廓
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)cv2.drawContours(img, contours, 3, (0, 0, 255), 5)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
# 绘制花朵的轮廓
import cv2img = cv2.imread("flower.png")cv2.imshow("img", img)
img = cv2.medianBlur(img, 5)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)cv2.imshow("binary", binary)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, (0, 0, 255), 2)
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
import cv2
# 矩形包围框img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
x, y, w, h = cv2.boundingRect(contours[0])
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
import cv2
# 圆形包围框
img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
center, radius = cv2.minEnclosingCircle(contours[0])
x = int(round(center[0]))
y = int(round(center[1]))
cv2.circle(img, (x, y), int(radius), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
import cv2
# 凸包
img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
hull = cv2.convexHull(contours[0])
cv2.polylines(img, [hull], True, (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
# Canny边缘检测
import cv2img = cv2.imread("flower.png")r1 = cv2.Canny(img, 10, 50)
r2 = cv2.Canny(img, 100, 200)
r3 = cv2.Canny(img, 400, 600)cv2.imshow("img", img)
cv2.imshow("r1", r1)
cv2.imshow("r2", r2)
cv2.imshow("r3", r3)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
# 检测笔图像中出现的直线
import cv2
import numpy as npimg = cv2.imread("./pen.jpg")o = img.copy()o = cv2.medianBlur(o, 5)gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)binary = cv2.Canny(o, 50, 150)lines = cv2.HoughLinesP(binary, 1, np.pi/180, 15, minLineLength=100, maxLineGap=18)for line in lines:x1, y1, x2, y2 = line[0]cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)cv2.imshow("canny", binary)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo8
# 圆环检测
import cv2
import numpy as npimg = cv2.imread("coin.jpg")o = img.copy()
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 70, param1=100, param2=25, minRadius=10, maxRadius=50)
circles = np.uint(np.around(circles))
for c in circles[0]:x, y, r = ccv2.circle(img, (x, y), r, (0, 0, 255), 3)cv2.circle(img, (x, y), 2, (0, 0, 255), 3)cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44562.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序 CSS-in-JS 和原子化的另一种选择

小程序 CSS-in-JS 和原子化的另一种选择 小程序 CSS-in-JS 和原子化的另一种选择 介绍快速开始 pandacss 安装和配置 0. 安装和初始化 pandacss1. 配置 postcss2. 检查你的 panda.config.ts3. 修改 package.json 脚本4. 全局 css 注册 pandacss5. 配置的优化与别名 weapp-pand…

Log4Qt日志框架(1)- 引入到QT中

Log4Qt日志框架(1)- 引入到QT中 1 下载源码2 简介3 加入到自己的项目中3.1 使用库文件3.2 引入源文件 4 说明 1 下载源码 github:https://github.com/MEONMedical/Log4Qt 官方(版本较老):https://sourceforge.net/projects/log4q…

希望计算机专业同学都知道这些博主

湖科大教书匠——计算机网络 “宝藏老师”、“干货满满”、“羡慕湖科大”…这些都是网友对这门网课的评价,可见网课质量之高!最全面的面试网站 湖南科技大学《计算机网络》微课堂是该校高军老师精心制作的视频课程,用简单的语言描述复杂的…

【开发】视频云存储EasyCVR视频汇聚平台AI智能算法定制

安防视频集中存储EasyCVR视频汇聚平台,可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等功能。为了便…

idea使用docker生成镜像(打包镜像,导入镜像,导出镜像)

1:先下载安装dockerdesktop,安装成功后 2: 在cmd执行docker -v,查看安装的docker版本 C:\Users\dell>docker -v Docker version 24.0.5, build ced09963:需要启动 dockerdesktop应用,才算启动docker&a…

openai多模态大模型:clip详解及实战

引言 CLIP全称Constrastive Language-Image Pre-training,是OpenAI推出的采用对比学习的文本-图像预训练模型。CLIP惊艳之处在于架构非常简洁且效果好到难以置信,在zero-shot文本-图像检索,zero-shot图像分类,文本→图像生成任务…

Windows 11 下使用 VMWare Workstation 17 Pro 新建 CentOS Stream 9 64位 虚拟机 并配置网络

文章目录 为什么选择 CentOS Stream 9下载安装访问连接快照克隆网络配置 为什么选择 CentOS Stream 9 CentOS Linux 8: 已经过了 End-of-life (EOL)CentOS Linux 7: EOL Jun 30th, 2024CentOS Stream 8: EOL May 31st, 2024CentOS Stream 9: End of RHEL9 full support phase …

PySpark-核心编程

2. PySpark——RDD编程入门 文章目录 2. PySpark——RDD编程入门2.1 程序执行入口SparkContext对象2.2 RDD的创建2.2.1 并行化创建2.2.2 获取RDD分区数2.2.3 读取文件创建 2.3 RDD算子2.4 常用Transformation算子2.4.1 map算子2.4.2 flatMap算子2.4.3 reduceByKey算子2.4.4 Wor…

第 7 章 排序算法(2)(冒泡排序)

7.5冒泡排序 7.5.1基本介绍 冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部…

CentOS上从源码安装Python 3.8并将其设置为默认版本

要在CentOS上从源码安装Python 3.8并将其设置为默认版本,你可以按照以下步骤操作: 首先,安装必要的依赖项: sudo yum -y groupinstall "Development Tools" sudo yum -y install openssl-devel bzip2-devel libffi-deve…

工具推荐:Chat2DB一款开源免费的多数据库客户端工具

文章首发地址 Chat2DB是一款开源免费的多数据库客户端工具,适用于Windows和Mac操作系统,可在本地安装使用,也可以部署到服务器端并通过Web页面进行访问。 相较于传统的数据库客户端软件如Navicat、DBeaver,Chat2DB具备了与AIGC…

韩顺平Linux 四十四--

四十四、rwx权限 权限的基本介绍 输入指令 ls -l 显示的内容如下 -rwxrw-r-- 1 root 1213 Feb 2 09:39 abc0-9位说明 第0位确定文件类型(d , - , l , c , b) l 是链接,相当于 windows 的快捷方式- 代表是文件是普通文件d 是目录,相…

Spring Security OAuth2.0认证授权

(单体项目的认证,微服务项目的认证授权) 1.基本概念 1.1 什么是认证 进入移动互联网时代,大家每天都在刷手机,常用的软件有微信、支付宝、头条等,下边拿微信来举例子说明认证相关的基本概念,在…

系统架构设计-架构师之路(八)

软件架构概述 需求分析到软件设计之间的过渡过程就是软件架构。 需求分析人员整理成文档,但是开发人员对业务并不熟悉,这时候中间就需要一个即懂软件又懂业务的人,架构师来把文档整理成系统里的各个开发模块,布置开发任务。 软…

腾讯云3年轻量应用服务器2核4G5M和2核2G4M详细介绍

腾讯云轻量应用服务器3年配置,目前可以选择三年的轻量配置为2核2G4M和2核4G5M,2核2G4M和2核4G5M带宽,当然也可以选择选一年,第二年xufei会比较gui,腾讯云百科分享腾讯云轻量应用服务器3年配置表: 目录 腾…

React React Native

文章目录 ReactReact vs Vue快速上手React,核心知识点JSX例子 组件虚拟DOM基于 React 的 UI 库 React Native基于 React Native 的 UI 库跟Java、ObjectC交互 React && React NativeReact (Native) 框架 React React 是一个用于构建用户界面的开源 JavaScr…

机器人制作开源方案 | 送餐机器人

作者:赖志彩、曹柳洲、王恩开、李雪儿、杨玉凯 单位:华北科技学院 指导老师:张伟杰、罗建国 一、作品简介 1. 场景调研 1.1项目目的 近年来,全国多地疫情频发,且其传染性极高,食品接触是传播途径之一。…

一元三次方程的解

一元三次方程的解法,点击跳转知乎原文地址 一元四次方程的解:https://blog.csdn.net/m0_37567738/article/details/129062960?csdn_share_tail%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22129062960%22%2C%22source%2…

c++ 面试题

文章目录 c面试准备语法c 11auto 和 decltype左值右值和移动语义 前和后 网络简述三次握手简述四次握手简述epeo select模型区别 内存程序在内存中如何分布 数据库索引失效的发生场景常用索引常用索引结构什么是ACID(数据库事务特性)mysql的锁分为哪些类别 c面试准备 语法 c …

均线多头排列和突破前高形态叠加,只为抓取主升浪!股票量化分析工具QTYX-V2.6.9...

功能概述 我们的股票量化系统QTYX在实战中不断迭代升级,针对当前行情,主要聚焦在抓取主升浪的强势股。 单一的指标是用局限的,QTYX的选股框架,是把多指标结合起来一起过滤出强势股。 QTYX支持从市场4000多只票中过滤出强势股的流程…