1. 图的应用总览
在数据结构中图的应用很广泛,本文主要从以下四个方面介绍:
①最小生成树:给定一个无向网络,在该网的所有生成树中,使得各边权数之和最小的那棵生成树称为该网的最小生成树,也叫最小代价生成树。
②拓扑排序:由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
③关键路径:在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径(Critical Path)。
④最短路径:最短路径问题是图研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
2. 最小生成树
问题提出:
要在n个城市间建立通信联络网。顶点:表示城市,权:城市间通信线路的花费代价。希望此通信网花费代价最小。
问题分析:
答案只能从生成树中找,因为要做到任何两个城市之间有线路可达,通信网必须是连通的;但对长度最小的要求可以知道网中显然不能有圈,如果有圈,去掉一条边后,并不破坏连通性,但总代价显然减少了,这与总代价最小的假设是矛盾的。
结论:
希望找到一棵生成树,它的每条边上的权值之和(即建立该通信网所需花费的总代价)最小 —— 最小代价生成树。
构造最小生成树的算法很多,其中多数算法都利用了一种称之为 MST 的性质。
MST 性质:设 N = (V, E) 是一个连通网,U是顶点集 V的一个非空子集。若边 (u, v) 是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边 (u, v) 的最小生成树。
(1)普里姆 (Prim) 算法
算法思想:
①设 N=(V, E)是连通网,TE是N上最小生成树中边的集合。
②初始令 U={u_0}, (u_0∈V), TE={ }。
③在所有u∈U,u∈U-V的边(u,v)∈E中,找一条代价最小的边(u_0,v_0 )。
④将(u_0,v_0 )并入集合TE,同时v_0并入U。
⑤重复上述操作直至U = V为止,则 T=(V,TE)为N的最小生成树。
代码实现:
void MiniSpanTree_PRIM(MGraph G,VertexType u)//用普里姆算法从第u个顶点出发构造网G的最小生成树T,输出T的各条边。//记录从顶点集U到V-U的代价最小的边的辅助数组定义;//closedge[j].lowcost表示在集合U中顶点与第j个顶点对应最小权值
{int k, j, i;k = LocateVex(G,u);for (j = 0; j < G.vexnum; ++j) //辅助数组的初始化if(j != k){closedge[j].adjvex = u;closedge[j].lowcost = G.arcs[k][j].adj;
//获取邻接矩阵第k行所有元素赋给closedge[j!= k].lowcost}closedge[k].lowcost = 0;
//初始,U = {u}; PrintClosedge(closedge,G.vexnum);for (i = 1; i < G.vexnum; ++i) \
//选择其余G.vexnum-1个顶点,因此i从1开始循环{k = minimum(G.vexnum,closedge);
//求出最小生成树的下一个结点:第k顶点PrintMiniTree_PRIM(G, closedge, k); //输出生成树的边closedge[k].lowcost = 0; //第k顶点并入U集PrintClosedge(closedge,G.vexnum);for(j = 0;j < G.vexnum; ++j){ if(G.arcs[k][j].adj < closedge[j].lowcost)
//比较第k个顶点和第j个顶点权值是否小于closedge[j].lowcost{closedge[j].adjvex = G.vexs[k];//替换closedge[j]closedge[j].lowcost = G.arcs[k][j].adj;PrintClosedge(closedge,G.vexnum);}}}
}
(2)克鲁斯卡尔 (Kruskal) 算法
算法思想:
①设连通网 N = (V, E ),令最小生成树初始状态为只有n个顶点而无边的非连通图,T=(V, { }),每个顶点自成一个连通分量。
②在 E 中选取代价最小的边,若该边依附的顶点落在T中不同的连通分量上(即:不能形成环),则将此边加入到T中;否则,舍去此边,选取下一条代价最小的边。
③依此类推,直至 T 中所有顶点都在同一连通分量上为止。
最小生成树可能不惟一!
3. 拓扑排序
(1)有向无环图
无环的有向图,简称 DAG (Directed Acycline Graph) 图。
有向无环图在工程计划和管理方面的应用:除最简单的情况之外,几乎所有的工程都可分为若干个称作“活动”的子工程,并且这些子工程之间通常受着一定条件的约束,例如:其中某些子工程必须在另一些子工程完成之后才能开始。
对整个工程和系统,人们关心的是两方面的问题:
①工程能否顺利进行;
②完成整个工程所必须的最短时间。
对应到有向图即为进行拓扑排序和求关键路径。
AOV网:
用一个有向图表示一个工程的各子工程及其相互制约的关系,其中以顶点表示活动,弧表示活动之间的优先制约关系,称这种有向图为顶点表示活动的网,简称AOV网(Activity On Vertex network)。
例如:排课表
AOV网的特点:
①若从i到j有一条有向路径,则i是j的前驱;j是i的后继。
②若< i , j >是网中有向边,则i是j的直接前驱;j是i的直接后继。
③AOV网中不允许有回路,因为如果有回路存在,则表明某项活动以自己为先决条件,显然这是荒谬的。
问题:
问题:如何判别 AOV 网中是否存在回路?
检测 AOV 网中是否存在环方法:对有向图构造其顶点的拓扑有序序列,若网中所有顶点都在它的拓扑有序序列中,则该AOV网必定不存在环。
拓扑排序的方法:
①在有向图中选一个没有前驱的顶点且输出之。
②从图中删除该顶点和所有以它为尾的弧。
③重复上述两步,直至全部顶点均已输出;或者当图中不存在无前驱的顶点为止。
一个AOV网的拓扑序列不是唯一的!
代码实现:
Status TopologicalSort(ALGraph G)//有向图G采用邻接表存储结构。//若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR.//输出次序按照栈的后进先出原则,删除顶点,输出遍历
{SqStack S;int i, count;int *indegree1 = (int *)malloc(sizeof(int) * G.vexnum);int indegree[12] = {0};FindInDegree(G, indegree); //求个顶点的入度下标从0开始InitStack(&S);PrintStack(S);for(i = 0; i < G.vexnum; ++i)if(!indegree[i]) //建0入度顶点栈Spush(&S,i); //入度为0者进栈count = 0; //对输出顶点计数while (S.base != S.top){ArcNode* p;pop(&S,&i);VisitFunc(G,i);//第i个输出栈顶元素对应的顶点,也就是最后进来的顶点 ++count; //输出i号顶点并计数for(p = G.vertices[i].firstarc; p; p = p->nextarc){ //通过循环遍历第i个顶点的表结点,将表结点中入度都减1int k = p->adjvex; //对i号顶点的每个邻接点的入度减1if(!(--indegree[k]))push(&S,k); //若入度减为0,则入栈}//for}//whileif(count < G.vexnum){printf("\n该有向图有回路!\n");return ERROR; //该有向图有回路}else{printf("\n该有向图没有回路!\n");return OK;}
}
关键路径
把工程计划表示为有向图,用顶点表示事件,弧表示活动,弧的权表示活动持续时间。每个事件表示在它之前的活动已经完成,在它之后的活动可以开始。称这种有向图为边表示活动的网,简称为 AOE网 (Activity On Edge)。
例如:
设一个工程有11项活动,9个事件。
事件v_1——表示整个工程开始(源点)
事件v_9——表示整个工程结束(汇点)
对AOE网,我们关心两个问题:
①完成整项工程至少需要多少时间?
②哪些活动是影响工程进度的关键?
关键路径——路径长度最长的路径。
路径长度——路径上各活动持续时间之和。
v_i——表示事件v_i的最早发生时间。假设开始点是v_1,从v_1到〖vi〗的最长路径长度。ⅇ(ⅈ)——表示活动a_i的最早发生时间。
l(ⅈ)——表示活动a_i最迟发生时间。在不推迟整个工程完成的前提下,活动a_i最迟必须开始进行的时间。
l(ⅈ)-ⅇ(ⅈ)意味着完成活动a_i的时间余量。
我们把l(ⅈ)=ⅇ(ⅈ)的活动叫做关键活动。显然,关键路径上的所有活动都是关键活动,因此提前完成非关键活动并不能加快工程进度。
例如上图中网,从从v_1到v_9的最长路径是(v_1,v_2,v_5,v_8,ν_9 ),路径长度是18,即ν_9的最迟发生时间是18。而活动a_6的最早开始时间是5,最迟开始时间是8,这意味着:如果a_6推迟3天或者延迟3天完成,都不会影响整个工程的完成。因此,分析关键路径的目的是辨别哪些是关键活动,以便争取提高关键活动的工效,缩短整个工期。
由上面介绍可知:辨别关键活动是要找l(ⅈ)=ⅇ(ⅈ)的活动。为了求ⅇ(ⅈ)和l(ⅈ),首先应求得事件的最早发生时间vⅇ(j)和最迟发生时间vl(j)。如果活动a_i由弧〈j,k〉表示,其持续时间记为dut(〈j,k〉),则有如下关系:
ⅇ(ⅈ)= vⅇ(j)
l(ⅈ)=vl(k)-dut(〈j,k〉)
求vⅇ(j)和vl(j)需分两步进行:
第一步:从vⅇ(0)=0开始向前递推
vⅇ(j)=Max{vⅇ(i)+dut(〈j,k〉)} 〈i,j〉∈T,j=1,2,…,n-1
其中,T是所有以第j个顶点为头的弧的集合。
第二步:从vl(n-1)=vⅇ(n-1)起向后递推
vl(i)=Min{vl(j)-dut(〈i,j〉)} 〈i,j〉∈S,i=n-2,…,0
其中,S是所有以第i个顶点为尾的弧的集合。
下面我们以上图AOE网为例,先求每个事件v_i的最早发生时间,再逆向求每个事件对应的最晚发生时间。再求每个活动的最早发生时间和最晚发生时间,如下面表格:
在活动的统计表中,活动的最早发生时间和最晚发生时间相等的,就是关键活动
关键路径的讨论:
①若网中有几条关键路径,则需加快同时在几条关键路径上的关键活动。 如:a11、a10、a8、a7。
②如果一个活动处于所有的关键路径上,则提高这个活动的速度,就能缩短整个工程的完成时间。如:a1、a4。
③处于所有关键路径上的活动完成时间不能缩短太多,否则会使原关键路径变成非关键路径。这时必须重新寻找关键路径。如:a1由6天变成3天,就会改变关键路径。
关键路径算法实现:
int CriticalPath(ALGraph G)
{ //因为G是有向网,输出G的各项关键活动SqStack T;int i, j; ArcNode* p;int k , dut;if(!TopologicalOrder(G,T))return 0;int vl[VexNum];for (i = 0; i < VexNum; i++)vl[i] = ve[VexNum - 1]; //初始化顶点事件的最迟发生时间while (T.base != T.top) //按拓扑逆序求各顶点的vl值{for(pop(&T, &j), p = G.vertices[j].firstarc; p; p = p->nextarc){k = p->adjvex; dut = *(p->info); //dut<j, k>if(vl[k] - dut < vl[j])vl[j] = vl[k] - dut;}//for}//whilefor(j = 0; j < G.vexnum; ++j) //求ee,el和关键活动{for (p = G.vertices[j].firstarc; p; p = p->nextarc){int ee, el; char tag;k = p->adjvex; dut = *(p->info);ee = ve[j]; el = vl[k] - dut;tag = (ee == el) ? '*' : ' ';PrintCriticalActivity(G,j,k,dut,ee,el,tag);}}return 1;
}
4.最短路
典型用途:交通网络的问题——从甲地到乙地之间是否有公路连通?在有多条通路的情况下,哪一条路最短?
交通网络用有向网来表示:顶点——表示城市,弧——表示两个城市有路连通,弧上的权值——表示两城市之间的距离、交通费或途中所花费的时间等。
如何能够使一个城市到另一个城市的运输时间最短或运费最省?这就是一个求两座城市间的最短路径问题。
问题抽象:在有向网中A点(源点)到达B点(终点)的多条路径中,寻找一条各边权值之和最小的路径,即最短路径。最短路径与最小生成树不同,路径上不一定包含n个顶点,也不一定包含n - 1条边。
常见最短路径问题:单源点最短路径、所有顶点间的最短路径
(1)如何求得单源点最短路径?
穷举法:将源点到终点的所有路径都列出来,然后在其中选最短的一条。但是,当路径特别多时,特别麻烦;没有规律可循。
迪杰斯特拉(Dijkstra)算法:按路径长度递增次序产生各顶点的最短路径。
路径长度最短的最短路径的特点:
在此路径上,必定只含一条弧 <v_0, v_1>,且其权值最小。由此,只要在所有从源点出发的弧中查找权值最小者。
下一条路径长度次短的最短路径的特点:
①、直接从源点到v_2<v_0, v_2>(只含一条弧);
②、从源点经过顶点v_1,再到达v_2<v_0, v_1>,<v_1, v_2>(由两条弧组成)
再下一条路径长度次短的最短路径的特点:
有以下四种情况:
①、直接从源点到v_3<v_0, v_3>(由一条弧组成);
②、从源点经过顶点v_1,再到达v_3<v_0, v_1>,<v_1, v_3>(由两条弧组成);
③、从源点经过顶点v_2,再到达v_3<v_0, v_2>,<v_2, v_3>(由两条弧组成);
④、从源点经过顶点v_1 ,v_2,再到达v_3<v_0, v_1>,<v_1, v_2>,<v_2, v_3>(由三条弧组成);
其余最短路径的特点:
①、直接从源点到v_i<v_0, v_i>(只含一条弧);
②、从源点经过已求得的最短路径上的顶点,再到达v_i(含有多条弧)。
Dijkstra算法步骤:
初始时令S={v_0}, T={其余顶点}。T中顶点对应的距离值用辅助数组D存放。
D[i]初值:若<v_0, v_i>存在,则为其权值;否则为∞。
从T中选取一个其距离值最小的顶点v_j,加入S。对T中顶点的距离值进行修改:若加进v_j作中间顶点,从v_0到v_i的距离值比不加 vj 的路径要短,则修改此距离值。
重复上述步骤,直到 S = V 为止。
算法实现:
void ShortestPath_DIJ(MGraph G,int v0,PathMatrix &P,ShortPathTable &D)
{ // 用Dijkstra算法求有向网 G 的 v0 顶点到其余顶点v的最短路径P[v]及带权长度D[v]。// 若P[v][w]为TRUE,则 w 是从 v0 到 v 当前求得最短路径上的顶点。 P是存放最短路径的矩阵,经过顶点变成TRUE// final[v]为TRUE当且仅当 v∈S,即已经求得从v0到v的最短路径。int v,w,i,j,min;Status final[MAX_VERTEX_NUM];for(v = 0 ;v < G.vexnum ;++v){final[v] = FALSE;D[v] = G.arcs[v0][v].adj; //将顶点数组中下标对应是 v0 和 v的距离给了D[v]for(w = 0;w < G.vexnum; ++w)P[v][w] = FALSE; //设空路径if(D[v] < INFINITY){P[v][v0] = TRUE;P[v][v] = TRUE;}}D[v0]=0;final[v0]= TRUE; /* 初始化,v0顶点属于S集 */for(i = 1;i < G.vexnum; ++i) /* 其余G.vexnum-1个顶点 */{ /* 开始主循环,每次求得v0到某个v顶点的最短路径,并加v到S集 */min = INFINITY; /* 当前所知离v0顶点的最近距离 */for(w = 0;w < G.vexnum; ++w)if(!final[w]) /* w顶点在V-S中 */if(D[w] < min){v = w;min = D[w];} /* w顶点离v0顶点更近 */final[v] = TRUE; /* 离v0顶点最近的v加入S集 */for(w = 0;w < G.vexnum; ++w) /* 更新当前最短路径及距离 */{if(!final[w] && min < INFINITY && G.arcs[v][w].adj < INFINITY && (min + G.arcs[v][w].adj < D[w])){ /* 修改D[w]和P[w],w∈V-S */D[w] = min + G.arcs[v][w].adj;for(j = 0;j < G.vexnum;++j)P[w][j] = P[v][j];P[w][w] = TRUE;}}}
}