各种卷积

从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向。在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构。

阅读本篇博客之前,建议将这篇博客结合在一起阅读,想必会有更深的理解。另外,不管是什么类型的卷积,我们都把它理解成一种运算操作。

  1. Group convolution

Group convolution是最早应用在2012年Alexnet的双GPU架构模型中,相当于把channel这一维度均分到两个GPU,进行分组卷积。如图所示:

 这篇论文是:ImageNet Classification with Deep Convolutional Neural Networks。由图可见,上下两个并行的网络结构只有在部分层中才有信息交互,而且网络结构一模一样,这就是Group convolution最早的应用,但是在caffe中经常使用的单机多GPU并行训练和上述问题存在本质区别,因为Group convolution是指将channel维度细分成多个group,然后再分组进行Convolution,而多GPU的训练只是一个数据并行分组的方式,其中minibatch和batch之间的关系就是batch=minibatch*GPU_num,这并不存在对channel的分组。

总之,Group convolution是一种卷积操作,想要切分channel,然后分组卷积,运算上没有什么特别的地方。

2.Pointwise convolution

点积,就是卷积核大小是1*1的,那为啥起名点积呢?就是因为这和向量中的点积运算很类似,举个例子,一张3通道的feature map,卷积核大小是1*1*3,那它的运算其实就是:Σ卷积核*单通道feature map。

总之,Pointwise convolution是一种卷积操作,而且是一种特殊的卷积运算,代表着卷积核的大小是1*1。

3.Separable convolution

可分离卷积,这种思路其实就是起了个高深的名字,也很常见。也是想在channel维度上改变经典的卷积运算,咋办呢?经典的卷积核都是k*k*channel大小的,其中channel是上一层的输出即本层的输入,这不太好,我们想任意指定一个channel,作为卷积核的大小,这样并不影响输入输出的特征图的长宽尺寸,仅仅改变了channel这一维度。这就变得很有意思了,同Group convolution不一样的是,可分离卷积可增加channel维度,而并没有依赖GPU。

举个例子,对于经典的卷积运算,如果说所需的参数量为256*3*3*256=589824。而对于可分离卷积,假设我们指定的卷积核是3*3*4,那首先是256*3*3*4=9216,接下来我们得到了4*256=1024个通道数,但是呢?这并没有完成,因为还需要下一个过程将channel重新压缩回256,接着有1024*1*1*256=262144,整个过程就是9216+262144=271360,看看,589824是271360的两倍多。虽然,这在很多框架上也许未能比较出效果的显著差异,那是多方面的原因。

值得一提的是,上面举的例子可以认为是Separable convolution 和Pointwise convolution结合在一起,事实上就是配套使用的。

最早的Separable convolution来源于论文:Simplifying ConvNets for Fast Learning,作者用的是k*1和1*k的卷积核,起名为可分离卷积,而本处的可分离卷积来源于另一篇论文:Xception: Deep Learning with Depthwise Separable Convolutions。

总之,Separable convolution是一种卷积操作,而且是一种特殊的卷积运算,代表着卷积核的channel维度可以自己任意选取。

4.Depthwise convolution

深度卷积,这名字又开始很高深了,其实它的意思就是拓展Separable convolution而来,我们可以让卷积核的channel维度等于1啊,这样就是深度卷积,意为在每一个channel上做卷积。值得注意的是,往往Separable convolution和Depthwise convolution是统称为Depthwise convolution。假设卷积核的shape是[filter_height, filter_width, in_channels, channel_multiplier],区别仅在于channel_multiplier,由于参考同一篇论文,此处将其统一。

这样说来,前面的例子中其实就是Depthwise separable convolution = Depthwise convolution + Pointwise convolution,这就是深度可分离卷积的真正内涵。这也就是以下论文的工作:Xception: Deep Learning with Depthwise Separable Convolutions

总之,Depthwise convolution是一种卷积操作,和Separable convolution一样,表示对channel维度进行卷积的一种方式。

5.Dilated convolution

空洞卷积是解决pixel-wise输出模型的一种常用的卷积方式。一种普遍的认识是,pooling下采样操作导致的信息丢失是不可逆的,通常的分类识别模型,只需要预测每一类的概率,所以我们不需要考虑pooling会导致损失图像细节信息的问题,但是做像素级的预测时(譬如语义分割),就要考虑到这个问题了。那么空洞卷积可以用下图来说明:

(a)图对应3x3的1-dilated convolution,就是典型的卷积(b)图对应3x3的2-dilated convolution,实际的卷积kernel size还是3x3,但是空洞为1,相当于kernel的size为7x7,图中只有红色点的权重不为0,其余都为0,把3*3的感受野增大到了7*7。(c)图是4-dilated convolution,能达到15x15的感受野。

也就是以下论文:Multi-scale context aggregation by dilated convolutions

总之,空洞卷积是卷积运算的一种方式,在于增大了感受野却不丢失语义信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/445145.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot——kaptcha

导入包&#xff1a; <dependency><groupId>com.github.penggle</groupId><artifactId>kaptcha</artifactId><version>2.3.2</version></dependency> 配置类&#xff1a; package com.now.community.community.config;import…

NLP复习资料(7)-机器翻译、文本分类、情感分析

NLP复习资料国科大&#xff0c;宗老师《自然语言处理》课程复习笔记&#xff0c;个人整理&#xff0c;仅供参考。此部分为手稿&#xff0c;高清图下载见链接&#xff1a;https://download.csdn.net/download/sinat_40624829/11662412

redis——对项目的一些优化方案

这是我们之前项目的业务流程&#xff0c;做一下简单介绍。 登录&#xff1a; 用户输入账号、密码、验证码。我们先判断用户输入的验证码是不是我们session存的验证码&#xff0c;然后去查账号密码是否正确。 如果登录成功&#xff0c;发送给用户一张凭证&#xff08;ticket&a…

深度模型压缩论文(02)- BlockSwap: Fisher-guided Block Substitution for Network Compression

文章目录1.摘要和背景1.1 摘要1.2 背景2.方法和贡献2.1 方法2.2 贡献3.实验和结果3.1 实验3.2 结果4.总结和展望4.1 总结4.2 展望本系列是在阅读深度神经网络模型小型化方面论文时的笔记&#xff01;内容大部分从论文中摘取&#xff0c;也会有部分自己理解&#xff0c;有错误的…

深度模型压缩论文(01)- Meta Filter Pruning to Accelerate Deep Convolutional Neural Networks

文章目录1.摘要和介绍1.1摘要部分2.背景和方法2.1 背景2.2 贡献2.3 方法3.实验和结果3.1 实验3.2 结果4.总结和展望4.1 总结4.2 展望本系列是在阅读深度神经网络模型小型化方面论文时的笔记&#xff01;内容大部分从论文中摘取&#xff0c;也会有部分自己理解&#xff0c;有错误…

深度模型压缩论文(03)- Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self

文章目录1.摘要和背景1.1 摘要1.2 背景2.方法和贡献2.1 方法2.1.1 训练过程2.1.2 loss介绍2.2 贡献3.实验和结果3.1 实验3.2 结果4.总结和展望4.1 总结4.2 展望主要贡献&#xff1a;基于网络蒸馏方法&#xff0c;提出了一种提升裁剪后模型的精度的方法&#xff01;将训练时间大…

关系数据库——基础

数据库系统概论 四个基本概念 数据&#xff1a;数据库中存储的基本对象&#xff0c;描述一个事物的符号记录&#xff0c;数据和其语义不可分开说 数据库&#xff08;DB&#xff09;&#xff1a;是长期储存在计算机内、有组织的、可共享的大量数据的集合。 数据库管理系统&a…

Python(27)-模块

模块、包1.模块导入的方式2.使用as给模块取一个别名&#xff08;大驼峰命名法&#xff09;3.从模块中导入部分工具4.从模块中导入全部工具5.模块搜索顺序6__name__7.包8.发布模块、安装模块、卸载包9.pip安装第三方模块本系列博文来自学习《Python基础视频教程》笔记整理&#…

如何使用docker配置深度学习开发环境

文章目录1.底层驱动的安装1.1 操作系统的安装1.2 显卡驱动的安装1.3 cuda的安装2.使用docker配置深度学习开发环境2.1 docker的安装2.2 nvidia_docker的安装2.3 安装过程中的问题2.3.1 docker和nvidia_docker的版本不匹配的问题。2.3.2 解决每次运行docker命令的时候要加sudo.2…

反射全解

反射的概念 反射的引入&#xff1a; Object obj new Student(); 若程序运行时接收到外部传入的一个对象&#xff0c;该对象的编译类型是Object&#xff0c;但程序又需要调用该对象运行类型的方法&#xff1a; 1.若编译和运行类型都知道&#xff0c;使用 instanceof判断后&…

CRegKey 注册表操作

1.简介 CRegKey提供了对系统注册表的操作方法&#xff0c;通过CRegKey类&#xff0c;可以方便的打开注册表的某个分支或子键&#xff08;CRegKey::Open&#xff09;&#xff0c;可以方便的修改一个键的键值&#xff08;CRegKey::SetValue&#xff09;&#xff0c;也可以查询某…

进程基础

进程的基本概念 程序顺序执行的特征&#xff1a; 1&#xff09;顺序性&#xff1a;处理机严格按照程序所规定的顺序执行&#xff0c;每一步操作必须在下一步操作开始前执行 2&#xff09;封闭性&#xff1a;程序在封闭的环境下运行&#xff0c;程序独占资源&#xff0c;资源的状…

用Docker容器自带的tensorflow serving部署模型对外服务

相信很多人和我一样&#xff0c;在试图安装tensorflow serving的时候&#xff0c;翻遍了网上的博客和官网文档&#xff0c;安装都是以失败而告终&#xff0c;我也是一样&#xff0c;这个问题折磨了我两个星期之久&#xff0c;都快放弃了。幸运的是在同事的建议下&#xff0c;我…

C资源

云风最近写了一篇博客《C语言的前世今生》。作为长期使用C语言开发网络游戏服务器的程序员&#xff0c;云风是有理由写这样一篇文字&#xff0c;不过还是感觉谈的不够深入&#xff0c;C语言在业界使用的现状没有怎么描写&#xff0c;有些意犹未尽。在这里想比较系统的谈谈个人对…

面试题汇总---深度学习(图像识别,NLP内容)

文章目录1.基本概念1.1 为什么神经网络中深度网络的表现比广度网络表现好&#xff1f;1.2 推导BP算法1.3 什么是梯度消失和梯度爆炸&#xff1f;1.4 常用的激活函数有哪些&#xff1f;1.5 常用的参数更新方法有哪些&#xff1f;1.6 解决过拟合的方法&#xff1f;数据层面模型层…

Python(28)-文件,os模块

文件1. 文件2. 文件的基本操作3. 读取文件open()3.1 文件指针: 标记从哪一个位置开始读取数据.3.2 文件的打开方式mode3.3 文件按行读取3.3.1 readline()3.3.2 readlines()4.文件输出f.write(),print()5.文件复制5.1 小文件复制&#xff08;搬家&#xff09;5.2 大文件复制&…

IOCP的程序

C代码 #include <winsock2.h> #include <mswsock.h> #include <windows.h> #include <stdio.h> #include <stdlib.h> #include <assert.h> #include "vld.h" #pragma message("automatic link to ws2_32.lib and…

PaperNotes(3)-图像分割-RCNN-FCN-Boxsup

图像分割算法对比小结1.{基本概念}2.{R-CNN}2.1R-CNN 网络结构选择性搜索算法为什么选择SVM作分类器边框回归2.2{R-CNN 训练}2.3{R-CNN实验结果}2.4{R-CNN语义分割}2.5{补充材料}2.5.1{R-CNN建议区域放缩}2.5.2{IOU阈值设置不一样的原因}2.5.3{Bounding-box回归修正}2.6{R-CNN存…

Python模块(3)--PIL 简易使用教程

PIL模块-用与记1.图片导入Image.open()2.图像显示.show()4.查看图片属性.format,.size,.mode3.图像格式转换.convert()4.图像模式“L”&#xff0c;“RGB”,"CYMK"5. 图片旋转.rotate()旋转方式1&#xff1a;旋转不扩展旋转方式2&#xff1a;旋转扩展旋转方式3&#…

输入输出系统

I/O设备&#xff1a;输入输出和存储功能的设备 I/O设备的分类 按传输的速度&#xff1a; 低速设备&#xff08;如键盘、鼠标、语音输入输出设备&#xff09; 中速设备&#xff08;如行式打印机、激光打印机等&#xff09; 高速设备&#xff08;如磁带机、磁盘机、光盘机等&…