一、概述
1.1 如何阅读?
对于一般人,没必要像对待常用公共组件一样,搞清楚每一个点,我们从使用的角度出发,把我们用到的功能读到即可。
1.2 如何下载 ?
https://github.com/quickfix/quickfix
1.3 大概都有哪些?
源码就在src\C++下,我们先大致浏览一下。
DataDictionary.cpp:解析诸如FIX42.xml的数据字典
Field.cpp:数据字典中解析预定义的field
Message.cpp:数据字典中解析处理message节点
Http.cpp: 实现http引擎的部分
Socket.cpp:会话层的通信
Session.cpp: 会话层的东西
还有一些其他的文件,略去不说。这里还要注意还有几个子文件夹:fix40/,fix41/,fix42/,fix43/,fix44/,fix50/,fix50sp1。这几个文件夹下是具体实现了该版本的一些头文件。
1.4 我会用到哪些?
上篇文章有使用的例子,我们去掉多余部分,拿过来是这样的:
int main( int argc, char** argv )
{FIX::Initiator * initiator = 0;try{FIX::SessionSettings settings( file );Application application;FIX::FileStoreFactory storeFactory( settings );FIX::ScreenLogFactory logFactory( settings );initiator = new FIX::SocketInitiator( application, storeFactory, settings, logFactory );initiator->start();application.run();initiator->stop();delete initiator;
'''}catch ( std::exception & e ){
'''}
}
请记住每一行代码,接下来,本文基本是每章讲解本代码中的一行。
二、SessionSettings
就是这一行:FIX::SessionSettings settings( file );
2.1 数据字典
Quickfix中进行数据字典的载入,解析本质是对几个xml文件的解析,是采用pugixml parser,官方网站:pugixml.org - Home。正如官网介绍的那样:
Light-weight, simple and fast XML parser for C++ with XPath support
然后Quickfix中在之上进行了一层自己的封装,形成PUGIXML_DOMAttributes类,PUGIXML_DOMNode类,PUGIXML_DOMDocument类。在头文件”PUGIXML_DOMDocument.h”中进行了定义,如下:
class PUGIXML_DOMAttributes : public DOMAttributes{public:PUGIXML_DOMAttributes( pugi::xml_node pNode ): m_pNode(pNode) {}bool get( const std::string&, std::string& );DOMAttributes::map toMap();private:pugi::xml_node m_pNode;};/// XML node as represented by pugixml.class PUGIXML_DOMNode : public DOMNode{public:PUGIXML_DOMNode( pugi::xml_node pNode ): m_pNode(pNode) {}~PUGIXML_DOMNode() {}DOMNodePtr getFirstChildNode();DOMNodePtr getNextSiblingNode();DOMAttributesPtr getAttributes();std::string getName();std::string getText();private:pugi::xml_node m_pNode;};/// XML document as represented by pugixml.class PUGIXML_DOMDocument : public DOMDocument{public:PUGIXML_DOMDocument() throw( ConfigError );~PUGIXML_DOMDocument();bool load( std::istream& );bool load( const std::string& );bool xml( std::ostream& );DOMNodePtr getNode( const std::string& );private:pugi::xml_document m_pDoc;};
}
其中大多数函数不需要特别关心,我们只需要重点关心PUGIXML_DOMDocument类中的load()函数,这也是最重要+最复杂的函数。
bool PUGIXML_DOMDocument::load( std::istream& stream ){try { return m_pDoc.load(stream);} catch( ... ) { return false; }}bool PUGIXML_DOMDocument::load( const std::string& url ){try { return m_pDoc.load_file(url.c_str());} catch( ... ) { return false; }}
这个函数就是对给定一个xml路径然后装载后返回一个pugi::xml_document的对象。
2.2 数据字典解析
上面的类实现了诸如FIX44.xml的载入处理,数据字典中定义了很多结构节点,比如fields,messages,groups等,DataDictionary.cpp是真正对这些xml文件进行解析的源文件。DataDictionary.h中部分源代码如下:
class DataDictionary
{typedef std::set < int > MsgFields;typedef std::map < std::string, MsgFields > MsgTypeToField;typedef std::set < std::string > MsgTypes;typedef std::set < int > Fields;typedef std::map < int, bool > NonBodyFields;typedef std::vector< int > OrderedFields;typedef message_order OrderedFieldsArray;typedef std::map < int, TYPE::Type > FieldTypes;typedef std::set < std::string > Values;typedef std::map < int, Values > FieldToValue;typedef std::map < int, std::string > FieldToName;typedef std::map < std::string, int > NameToField;typedef std::map < std::pair < int, std::string > , std::string > ValueToName;// while FieldToGroup structure seems to be overcomplicated// in reality it yields a lot of performance because:// 1) avoids memory copying;// 2) first lookup is done by comparing integers and not string objects// TODO: use hash_map with good hashing algorithmtypedef std::map < std::string, std::pair < int, DataDictionary* > > FieldPresenceMap;typedef std::map < int, FieldPresenceMap > FieldToGroup;public:DataDictionary();DataDictionary( const DataDictionary& copy );DataDictionary( std::istream& stream ) throw( ConfigError );DataDictionary( const std::string& url ) throw( ConfigError );virtual ~DataDictionary();void readFromURL( const std::string& url ) throw( ConfigError );void readFromDocument( DOMDocumentPtr pDoc ) throw( ConfigError );void readFromStream( std::istream& stream ) throw( ConfigError );......
};
....
可以看到DataDictionary类中定义了很多的std::map和std::vector,这些容器都是用来存储从FIX4X.xml文件中解析来的内容,一些映射,但是是否过于繁琐,我没有深究。
比如:
typedef std::map < int, std::string > FieldToName;
表示存储field和实际的字段名的映射,比如8对应BeginString;
typedef std::map < int, Values > FieldToValue;
表示枚举当中的int值跟实际的字段名的映射,比如:
<field number='13' name='CommType' type='CHAR'><value enum='1' description='PER_UNIT' /><value enum='2' description='PERCENTAGE' /><value enum='3' description='ABSOLUTE' /><value enum='4' description='4' /><value enum='5' description='5' /><value enum='6' description='POINTS_PER_BOND_OR_CONTRACT_SUPPLY_CONTRACTMULTIPLIER' /></field>
3代表ABSOLUTE;1代表PER_UNIT。
另外需要注意的成员函数readFrom*()系列,底层就是上一章中的类,进行xml的载入。
void DataDictionary::readFromURL( const std::string& url )throw( ConfigError ){DOMDocumentPtr pDoc = DOMDocumentPtr(new PUGIXML_DOMDocument());if(!pDoc->load(url))¦ throw ConfigError(url + ": Could not parse data dictionary file");try {¦ readFromDocument( pDoc );}catch( ConfigError& e ) {¦ throw ConfigError( url + ": " + e.what() );}}void DataDictionary::readFromStream( std::istream& stream )throw( ConfigError ){
>* DOMDocumentPtr pDoc = DOMDocumentPtr(new PUGIXML_DOMDocument());if(!pDoc->load(stream))¦ throw ConfigError("Could not parse data dictionary stream");readFromDocument( pDoc );}>*void DataDictionary::readFromDocument( DOMDocumentPtr pDoc )throw( ConfigError ){// VERSIONDOMNodePtr pFixNode = pDoc->getNode("/fix");if(!pFixNode.get())
...
}
到这里,数据字典的解析就完成了。简单的理解就是,读入xml文件,然后针对xml文件里的内容,把内容做成映射用map和vector存储。
2.3 数据字典存储
SessionSettings
/// Container for setting dictionaries mapped to sessions.
class SessionSettings
{
public:SessionSettings() { m_resolveEnvVars = false; }SessionSettings( std::istream& stream, bool resolveEnvVars = false ) EXCEPT ( ConfigError );SessionSettings( const std::string& file, bool resolveEnvVars = false ) EXCEPT ( ConfigError );
''''''typedef std::map < SessionID, Dictionary > Dictionaries;std::set < SessionID > getSessions() const;private:Dictionaries m_settings;Dictionary m_defaults;
'''friend std::istream& operator>>( std::istream&, SessionSettings& ) EXCEPT ( ConfigError );friend std::ostream& operator<<( std::ostream&, const SessionSettings& );
};
是通过友元函数 operator >>
从任意的流中读取配置,通过一个sessonid的set和一个sessionid->dictionary的map,管理每个段。
三、Application
3.1 Application
若是须要使用QuickFIX开发FIX应用,则须要实现FIX::Application接口,并重载不一样FIX协议版本的MessageCracker::OnMessage接口,如FIX42::MessageCracker。
class Application
{
public:virtual ~Application() {};/// Notification of a session begin createdvirtual void onCreate( const SessionID& ) = 0;/// Notification of a session successfully logging onvirtual void onLogon( const SessionID& ) = 0;/// Notification of a session logging off or disconnectingvirtual void onLogout( const SessionID& ) = 0;/// Notification of admin message being sent to targetvirtual void toAdmin( Message&, const SessionID& ) = 0;/// Notification of app message being sent to targetvirtual void toApp( Message&, const SessionID& )EXCEPT ( DoNotSend ) = 0;/// Notification of admin message being received from targetvirtual void fromAdmin( const Message&, const SessionID& )EXCEPT ( FieldNotFound, IncorrectDataFormat, IncorrectTagValue, RejectLogon ) = 0;/// Notification of app message being received from targetvirtual void fromApp( const Message&, const SessionID& )EXCEPT ( FieldNotFound, IncorrectDataFormat, IncorrectTagValue, UnsupportedMessageType ) = 0;
};
onCreate:当Fix Session创建时调用。
onLogon:当Fix Session登陆成功时调用。
onLogout:当Fix Session退出时调用。
fromAdmin:当收到一个Admin类型消息时调用。
fromApp:当收到一个不属于Admin 类型消息时调用。
toAdmin:当发送一个admin类型消息调用。
toApp:当发送一个非admin(业务类型)消息调用。
admin一般是服务提供方,app是客户端
3.2 MessageCracker
除了实现FIX::Application接口,还需要重新实现FIX::MessageCracker从具体的FIX协议版本实现继承而来的onMessage方法,crack接口就可以根据message类型匹配到你实现的具体onMessage接口上。
void crack( const Message& message,const SessionID& sessionID ){const FIX::BeginString& beginString = FIELD_GET_REF( message.getHeader(), BeginString );crack( message, sessionID, beginString );}void crack( const Message& message,const SessionID& sessionID,const BeginString& beginString ){if ( beginString == BeginString_FIX40 )((FIX40::MessageCracker&)(*this)).crack((const FIX40::Message&) message, sessionID);else if ( beginString == BeginString_FIX41 )((FIX41::MessageCracker&)(*this)).crack((const FIX41::Message&) message, sessionID);else if ( beginString == BeginString_FIX42 )((FIX42::MessageCracker&)(*this)).crack((const FIX42::Message&) message, sessionID);else if ( beginString == BeginString_FIX43 )((FIX43::MessageCracker&)(*this)).crack((const FIX43::Message&) message, sessionID);else if ( beginString == BeginString_FIX44 )((FIX44::MessageCracker&)(*this)).crack((const FIX44::Message&) message, sessionID);else if ( beginString == BeginString_FIXT11 ){if( message.isAdmin() ){((FIXT11::MessageCracker&)(*this)).crack((const FIXT11::Message&) message, sessionID);}else{
'''}}}
四、*Factory
就是这两行:
FIX::FileStoreFactory storeFactory( settings );
FIX::ScreenLogFactory logFactory( settings );
逻辑比较简单,就是读了上文介绍的settings,然后存下来,存储结构如下:
std::string m_path;
SessionSettings m_settings;
五、initiator/Acceptor
也就是这一行 initiator = new FIX::SocketInitiator( application, storeFactory, settings, logFactory );
这俩大概差不多,先看一个。
主要代码如下:
/*** Base for classes which act as an acceptor for incoming connections.** Most users will not need to implement one of these. The default* SocketAcceptor implementation will be used in most cases.*/
class Acceptor
{
public:
''''''Acceptor( Application&, MessageStoreFactory&,const SessionSettings&, LogFactory& ) EXCEPT ( ConfigError );virtual ~Acceptor();''''''/// Poll the acceptorbool poll( double timeout = 0.0 ) EXCEPT ( ConfigError, RuntimeError );/// Stop acceptor.void stop( bool force = false );/// Check to see if any sessions are currently logged onbool isLoggedOn();Session* getSession( const std::string& msg, Responder& );const std::set<SessionID>& getSessions() const { return m_sessionIDs; }Session* getSession( const SessionID& sessionID ) const;const Dictionary* const getSessionSettings( const SessionID& sessionID ) const;bool has( const SessionID& id ){ return m_sessions.find( id ) != m_sessions.end(); }bool isStopped() { return m_stop; }Application& getApplication() { return m_application; }MessageStoreFactory& getMessageStoreFactory(){ return m_messageStoreFactory; }private:
''''''static THREAD_PROC startThread( void* p );typedef std::set < SessionID > SessionIDs;typedef std::map < SessionID, Session* > Sessions;thread_id m_threadid;Sessions m_sessions;SessionIDs m_sessionIDs;Application& m_application;MessageStoreFactory& m_messageStoreFactory;
protected:SessionSettings m_settings;
private:LogFactory* m_pLogFactory;Log* m_pLog;NullLog m_nullLog;bool m_firstPoll;bool m_stop;
};
基本包含了之前介绍的大部分类,如
Session相关的(SessionSettings/set<SessionID>/map<SessionID, Session*>)、
Application(用于接收并处理消息的)、LogFactory(写日志的对象)
5.1 init
功能就是把配置的每一个session初始化,很简单。
void Acceptor::initialize() EXCEPT ( ConfigError )
{std::set < SessionID > sessions = m_settings.getSessions();std::set < SessionID > ::iterator i;if ( !sessions.size() )throw ConfigError( "No sessions defined" );SessionFactory factory( m_application, m_messageStoreFactory,m_pLogFactory );for ( i = sessions.begin(); i != sessions.end(); ++i ){if ( m_settings.get( *i ).getString( CONNECTION_TYPE ) == "acceptor" ){m_sessionIDs.insert( *i );m_sessions[ *i ] = factory.create( *i, m_settings.get( *i ) );}}if ( !m_sessions.size() )throw ConfigError( "No sessions defined for acceptor" );
}
5.2 start
这一行:Acceptor/
initiator->start();
- 调用
SocketAcceptor::onInitialize()
创建 socket 句柄,进行监听端口。 - 启动线程,调用
SocketAcceptor::onStart()
,检测对端的连接
void Acceptor::start() EXCEPT ( ConfigError, RuntimeError )
{m_stop = false;onConfigure( m_settings );onInitialize( m_settings );HttpServer::startGlobal( m_settings );if( !thread_spawn( &startThread, this, m_threadid ) )throw RuntimeError("Unable to spawn thread");
}
其他的操作大同小异,可以自己阅读
5.3 SocketAcceptor::onInitialize
主要功能就是对每个session设置监听
void SocketAcceptor::onInitialize(const SessionSettings& s)EXCEPT ( RuntimeError )
{short port = 0;try{m_pServer = new SocketServer(1);std::set<SessionID> sessions = s.getSessions();std::set<SessionID>::iterator i = sessions.begin();for( ; i != sessions.end(); ++i ){const Dictionary& settings = s.get( *i );port = (short)settings.getInt( SOCKET_ACCEPT_PORT );
''''''// 管理监听端口与 SeesionID 的对应关系m_portToSessions[port].insert(*i);// 为每个监听的端口创建 Socket 句柄: socket_handlem_pServer->add( port, reuseAddress, noDelay, sendBufSize, rcvBufSize );}}catch( SocketException& e ){
''''''}
}
5.4
5.2中的第二步调用
THREAD_PROC Acceptor::startThread( void* p )
{Acceptor * pAcceptor = static_cast < Acceptor* > ( p );pAcceptor->onStart();return 0;
}
六、session
回顾所有我们浏览的代码,唯独没有介绍session,最后来看一下。
6.1 session创建
用factory(初始化心跳、session)
Session* SessionFactory::create( const SessionID& sessionID,const Dictionary& settings ) EXCEPT ( ConfigError )
{std::string connectionType = settings.getString( CONNECTION_TYPE );if ( connectionType != "acceptor" && connectionType != "initiator" )throw ConfigError( "Invalid ConnectionType" );if( connectionType == "acceptor" && settings.has(SESSION_QUALIFIER) )throw ConfigError( "SessionQualifier cannot be used with acceptor." );// 初始化心跳HeartBtInt heartBtInt( 0 );if ( connectionType == "initiator" ){heartBtInt = HeartBtInt( settings.getInt( HEARTBTINT ) );if ( heartBtInt <= 0 ) throw ConfigError( "Heartbeat must be greater than zero" );}// 创建 Session 对象SmartPtr<Session> pSession;pSession.reset( new Session( m_application, m_messageStoreFactory,sessionID, dataDictionaryProvider, sessionTimeRange,heartBtInt, m_pLogFactory ) );return pSession.release();
}
其中session对象内属性太多,挑一些重要的看:
Application(会话)、
SessionID(标识唯一session)、
m_sessionTime/m_logonTime(主要用于之前讲的24小时重新连接,对应配置)、
m_senderDefaultApplVerID/m_targetDefaultApplVerID(发送端/接收端默 Fix 协议版本号)、
m_state(session状态)、
send()(发送消息函数)、
next()(处理收到的消息,比较重要)
6.2 next()
精简过的代码如下
void Session::next( const Message& message, const UtcTimeStamp& timeStamp, bool queued )
{const Header& header = message.getHeader();try{//检查时间if ( !checkSessionTime(timeStamp) ){ reset(); return; }//获取类型,下面根据类型分处理方法const MsgType& msgType = FIELD_GET_REF( header, MsgType );//校验时间const BeginString& beginString = FIELD_GET_REF( header, BeginString );// make sure these fields are presentFIELD_THROW_IF_NOT_FOUND( header, SenderCompID );FIELD_THROW_IF_NOT_FOUND( header, TargetCompID );if ( beginString != m_sessionID.getBeginString() )throw UnsupportedVersion();const DataDictionary& sessionDataDictionary = m_dataDictionaryProvider.getSessionDataDictionary(m_sessionID.getBeginString());if( m_sessionID.isFIXT() && message.isApp() ){ApplVerID applVerID = m_targetDefaultApplVerID;header.getFieldIfSet(applVerID);const DataDictionary& applicationDataDictionary = m_dataDictionaryProvider.getApplicationDataDictionary(applVerID);DataDictionary::validate( message, &sessionDataDictionary, &applicationDataDictionary );}else{sessionDataDictionary.validate( message );}if ( msgType == MsgType_Logon )nextLogon( message, timeStamp );else if ( msgType == MsgType_Heartbeat )nextHeartbeat( message, timeStamp );else if ( msgType == MsgType_TestRequest )nextTestRequest( message, timeStamp );else if ( msgType == MsgType_SequenceReset )nextSequenceReset( message, timeStamp );else if ( msgType == MsgType_Logout )nextLogout( message, timeStamp );else if ( msgType == MsgType_ResendRequest )nextResendRequest( message, timeStamp );else if ( msgType == MsgType_Reject )nextReject( message, timeStamp );else{if ( !verify( message ) ) return ;//内含Session::doTargetTooLow() 来处理序列号过小的消息// Session::doTargetTooHigh() 来处理序列号过大的消息m_state.incrNextTargetMsgSeqNum();}}''''''if( !queued )nextQueued( timeStamp );if( isLoggedOn() )next();
}
经过各种检查后,根据type调用不同的处理方法,然后操作queue进行下次操作。
这里调用的函数太多了,挑一个复杂的看一下。
6.3 nextResendRequest()
当收到 type是ResendRequest 消息时,回调用nextResendRequest()
处理:
void Session::nextResendRequest(const Message& resendRequest, const UtcTimeStamp& timeStamp)
{// ...// 从缓存拿出需要重传的消息片段(从MessageStore中的消息,如果是FileStore,那么就会从文件中取出)std::vector < std::string > messages;m_state.get( beginSeqNo, endSeqNo, messages );// ...for ( i = messages.begin(); i != messages.end(); ++i ){// 重新计算消息的校验和// ...if ( Message::isAdminMsgType( msgType ) ){// 跳过管理消息if ( !begin ) begin = msgSeqNum;}else{// 在 resend 里会回调 Application::toAppif ( resend( msg ) ){// 有需要跳过的管理消息,则用一条 SeqReset-GapFill 消息替代if ( begin ) generateSequenceReset( begin, msgSeqNum );// 发送应用消息send( msg.toString(messageString) );m_state.onEvent( "Resending Message: "+ IntConvertor::convert( msgSeqNum ) );begin = 0;appMessageJustSent = true;}else{ if ( !begin ) begin = msgSeqNum; }}current = msgSeqNum + 1;}// 结尾还有需要跳过的管理消息,需要用一条 SeqReset-GapFill 消息替代if ( begin ){generateSequenceReset( begin, msgSeqNum + 1 );}// 序列号同步。为什么在重传借宿后还需要再发送一个 SeqReset-GapFill 消息?if ( endSeqNo > msgSeqNum ){endSeqNo = EndSeqNo(endSeqNo + 1);int next = m_state.getNextSenderMsgSeqNum();if( endSeqNo > next )endSeqNo = EndSeqNo(next);if ( appMessageJustSent )beginSeqNo = msgSeqNum + 1;generateSequenceReset( beginSeqNo, endSeqNo );}resendRequest.getHeader().getField( msgSeqNum );if( !isTargetTooHigh(msgSeqNum) && !isTargetTooLow(msgSeqNum) )m_state.incrNextTargetMsgSeqNum();
}
作者修行尚浅,这里只是浅读一下源码,由于使用经验不足,肯定对一些知识的认识不足,以后多加改正。