micropython SSD1306/SSD1315驱动

目录

简介

代码

功能

显示ASCII字符

​编辑

画任意直线

 画横线

 画竖线

 画矩形

 画椭圆

 画立方体

 画点阵图

 翻转

 反相

 滚动

横向滚动

纵向滚动

奇葩滚动


简介

我重新写了一个驱动,增加了一些功能,由于我的硬件是128*64oled单色I2C,我只适配了我的硬件。如果你的硬件和我相同,你可以使用我的ssd1306驱动.

我的oled似乎不是ssd1306驱动芯片,而是ssd1315驱动芯片,不过两者差别很小,仅在滚动那块有些许出入

如果你是大佬,可以复制代码后就走人;如果你是小白,推荐你边看边打代码,我给出例子和注释

代码

import framebufclass SSD1306():def __init__(self,external_vcc):self.width = 128self.height = 64self.external_vcc = external_vccself.pages = 8self.init_display()def init_display(self):for cmd in (0xae,        # 熄屏0x20, 0x00,  # 水平寻址0x40,        # 显示起始行地址0xa1,        # 正常列扫描0xa8, 63,    # 复用率0xc8,        # 正常行扫描0xd3, 0x00,  #设置COM偏移量,即屏幕像上偏移的行数0xda, 0x12,  #使用备选引脚配置,并禁用左右反置0xd5, 0x80,  # 设置分频因子与振荡频率0xd9, 0x22 if self.external_vcc else 0xf1,0xdb, 0x30,  # 设置vcomh电压为0.83*Vcc0x81, 0xff,  # 亮度最大0xa4,        # 使用GDDRAM中的数据显示0xa6,        # 设置GDDRAM中的0对应于像素点的暗# 关闭电荷泵0x8d, 0x10 if self.external_vcc else 0x14,0x2e,        # 禁止滚动0xaf):       #开屏self.write_cmd(cmd)self.fill(0)self.show()#设置水平滚动,参数:滚动区域(滚动起始页,滚动结束页),滚动方向(默认向左,填0向右),滚动速度(0-7)  def h_scroll(self,start=0,end=7,d=1,speed=0): self.write_cmd(0x2e)     # 关闭滚动self.write_cmd(0x26+d) # 向左self.write_cmd(0x00)self.write_cmd(start) # 起始页self.write_cmd(speed) # 滚动帧率self.write_cmd(end) # 结束页self.write_cmd(0x00)self.write_cmd(0xff)self.write_cmd(0x2f) # 开启滚动#默认开启竖直向上滚动与水平向右滚动def scroll(self,vScrollOn=0,vStart=0,vEnd=63,vSpeed=1,hScrollOn=1,direction=0,hSpeed=0,hScrollStartPage=0,hScrollEndPage=7,hScrollStartColumn=0,hScrollEndColumn=127):if vScrollOn:self.write_cmd(0x2e)# 关闭滚动self.write_cmd(0xa3)#设置竖直滚动命令self.write_cmd(vStart)#竖直滚动开始行self.write_cmd(vEnd)#竖直滚动结束行self.write_cmd(0x29+direction)#水平滚动方向向右self.write_cmd(hScrollOn) # 0,关闭水平滚动,1开启self.write_cmd(hScrollStartPage)# 水平滚动起始页self.write_cmd(hSpeed)#设置滚动速度0-7self.write_cmd(hScrollEndPage)# 水平滚动结束页self.write_cmd(vSpeed) # 每一帧的垂直偏移量self.write_cmd(hScrollStartColumn)#水平滚动区域的起始列self.write_cmd(hScrollEndColumn)#水平滚动区域的结束列self.write_cmd(0x2f)# 开启滚动#关闭oleddef poweroff(self):self.write_cmd(0xae | 0x00)#熄屏#亮度,0x00-0xffdef contrast(self, contrast):self.write_cmd(0x81)self.write_cmd(contrast)#正反相显示,输入1则反相,默认正相def invert(self, invert=0):self.write_cmd(0xa6 | invert)# 显示def show(self):self.write_cmd(0x21) # 告诉GDDRAM列数self.write_cmd(0) # 列数从0-127self.write_cmd(127)self.write_cmd(0x22) # 告诉GDDRAM行数self.write_cmd(0) # 页数从0-7self.write_cmd(7)self.write_framebuf() # 写入1bit地址和1024bit数据# 水平翻转,0翻转,1正常(默认)def hv(self,b=1):self.write_cmd(0xc0 | b<<3)#竖直翻转,0翻转,1正常(默认)    def vv(self,b=1):self.write_cmd(0xa0|b)#刷新缓冲区def fill(self, c):self.framebuf.fill(c)#画点,默认点亮,置0则暗def pixel(self, x, y, c=1):self.framebuf.pixel(x, y, c)#写字符def text(self, s, x, y, c=1):self.framebuf.text(s, x, y, c)#画水平直线def hline(self,x,y,w,c=1):self.framebuf.hline(x,y,w,c)#画竖直直线def vline(self,x,y,h,c=1):self.framebuf.vline(x,y,h,c)#画任意直线 def line(self,x1,y1,x2,y2,c=1):self.framebuf.line(x1,y1,x2,y2,c)#画矩形,参数:起始左上角坐标,长宽,颜色默认为亮,是否填充def rect(self,x,y,w,h,c=1,f=False):self.framebuf.rect(x,y,w,h,c,f)#画椭圆,参数:起始圆心坐标,x半径,y半径,颜色默认为亮,是否填充,显示象限(0-15的数字)def ellipse(self,x,y,xr,yr,c=1,f=False,m=15):self.framebuf.ellipse(x,y,xr,yr,c,f,m)#画立方体,左上前点的坐标,边长def cube(self,x,y,l):self.rect(x,y,l,l)self.rect(x+int(0.5*l),int(y-0.5*l),l,l)self.line(x,y,int(x+0.5*l),int(y-0.5*l))self.line(x+l-1,y,int(x+1.5*l-1),int(y-0.5*l))self.line(x-1,y+l,int(x+0.5*l),int(y+0.5*l-1))self.line(x+l-1,y+l-1,int(x+1.5*l-1),int(y+0.5*l-1))#画8*8的图,列行def p8(self,page,x,y):for e in range(8):byte=bin(page[e]).replace('0b','')while len(byte)<8:byte='0'+bytefor i in range(8):if byte[i]=='1':self.pixel(x+e,y+i,int(byte[i]))#画16*16的图,列行def p16(self,page,x,y):for e in range(32):byte=bin(page[e]).replace('0b','')while len(byte)<8:byte='0'+bytefor i in range(8):if byte[i] and e<16:self.pixel(x+e,y+i,int(byte[i]))elif byte[i] and e>=16:self.pixel(x-16+e,y+8+i,int(byte[i]))#画32*32的图,列行def p32(self,page,x,y):for e in range(128):byte=bin(page[e]).replace('0b','')while len(byte)<8:byte='0'+bytefor i in range(8):if byte[i] and e<32:self.pixel(x+e,y+i,int(byte[i]))elif byte[i] and 32<=e<64:self.pixel(x+e-32,y+8+i,int(byte[i]))elif byte[i] and 64<=e<96:self.pixel(x+e-64,y+16+i,int(byte[i]))elif byte[i] and 96<=e<128:self.pixel(x+e-96,y+24+i,int(byte[i]))class SSD1306_I2C(SSD1306):def __init__(self,i2c, addr=0x3c, external_vcc=False):self.i2c = i2cself.addr = addrself.temp = bytearray(2)# buffer需要8 * 128的显示字节加1字节命令self.buffer = bytearray(8 * 128 + 1)self.buffer[0] = 0x40  # Co=0, D/C=1self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], 128, 64)super().__init__(external_vcc)def write_cmd(self, cmd):self.temp[0] = 0x80 # Co=1, D/C#=0self.temp[1] = cmdself.i2c.writeto(self.addr, self.temp)def write_framebuf(self):self.i2c.writeto(self.addr, self.buffer)

功能

显示ASCII字符

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)oled.text('hello world',0,0)oled.show()

画任意直线

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)oled.line(0,2,50,60)oled.show()

 画横线

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)oled.hline(2,30,80)oled.show()

 画竖线

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)oled.vline(20,0,40)oled.show()

 

 画矩形

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)
#左上角x,y坐标,长,宽
oled.rect(20,0,40,20)oled.show()

 画椭圆

众所周知,圆也是椭圆的一种

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)
参数,中心点x,y坐标,x轴向半径,y轴向半径,f=True为填充,默认不填充
oled.ellipse(20,30,10,20)
oled.ellipse(60,20,10,20,f=True)oled.show()

 还有一个参数非常奇怪,不常用,自己改数字(范围0-15)体会

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)oled.ellipse(60,20,10,20,m=5)oled.show()

 画立方体

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)
#左前顶面的xy坐标,边长
oled.cube(10,10,20)oled.show()

 画点阵图

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic=[0x04,0x06,0xFF,0x97,0x57,0x37,0x16,0x04]
#8*8点阵数据,图像左上角xy坐标。16*16,32*32的也一样,只不过改函数名oled.p16()而已
oled.p8(pic,30,30)oled.show()

 翻转

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic1=[0x00,0x00,0x0F,0x08,0x08,0x08,0x08,0xFF,0x08,0x08,0x08,0x08,0x0F,0x00,0x00,0x00,
0x00,0x00,0xF0,0x20,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0xF0,0x00,0x00,0x00]pic2=[0x00,0x7F,0x40,0x48,0x49,0x49,0x49,0x4F,0x49,0x49,0x49,0x48,0x40,0x7F,0x00,0x00,
0x00,0xFF,0x02,0x12,0x12,0x12,0x12,0xF2,0x12,0x52,0x32,0x12,0x02,0xFF,0x00,0x00]oled.p16(pic1,0,0)
oled.p16(pic2,16,0)
oled.show()
#以中心竖直轴翻转,填1则正常显示
oled.vv(0)

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic1=[0x00,0x00,0x0F,0x08,0x08,0x08,0x08,0xFF,0x08,0x08,0x08,0x08,0x0F,0x00,0x00,0x00,
0x00,0x00,0xF0,0x20,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0xF0,0x00,0x00,0x00]pic2=[0x00,0x7F,0x40,0x48,0x49,0x49,0x49,0x4F,0x49,0x49,0x49,0x48,0x40,0x7F,0x00,0x00,
0x00,0xFF,0x02,0x12,0x12,0x12,0x12,0xF2,0x12,0x52,0x32,0x12,0x02,0xFF,0x00,0x00]oled.p16(pic1,0,0)
oled.p16(pic2,16,0)
oled.show()
#以中心水平轴翻转
oled.hv(0)

 反相

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic1=[0x00,0x00,0x0F,0x08,0x08,0x08,0x08,0xFF,0x08,0x08,0x08,0x08,0x0F,0x00,0x00,0x00,
0x00,0x00,0xF0,0x20,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0xF0,0x00,0x00,0x00]pic2=[0x00,0x7F,0x40,0x48,0x49,0x49,0x49,0x4F,0x49,0x49,0x49,0x48,0x40,0x7F,0x00,0x00,
0x00,0xFF,0x02,0x12,0x12,0x12,0x12,0xF2,0x12,0x52,0x32,0x12,0x02,0xFF,0x00,0x00]oled.p16(pic1,0,0)
oled.p16(pic2,16,0)
oled.show()
#默认不反相,即默认0
oled.invert(1)

 滚动

横向滚动

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic1=[0x00,0x00,0x0F,0x08,0x08,0x08,0x08,0xFF,0x08,0x08,0x08,0x08,0x0F,0x00,0x00,0x00,
0x00,0x00,0xF0,0x20,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0xF0,0x00,0x00,0x00]pic2=[0x00,0x7F,0x40,0x48,0x49,0x49,0x49,0x4F,0x49,0x49,0x49,0x48,0x40,0x7F,0x00,0x00,
0x00,0xFF,0x02,0x12,0x12,0x12,0x12,0xF2,0x12,0x52,0x32,0x12,0x02,0xFF,0x00,0x00]oled.p16(pic1,0,0)
oled.p16(pic2,16,0)
oled.show()
#默认整个页面一起滚动
#参数:
#滚动起始页,滚动结束页
#滚动方向(默认向左,填0向右)
#滚动速度(0-7,默认0,不一定数字越大速度越大)
oled.h_scroll()

oled横滚

纵向滚动

目前我只能实现向上滚,还有点bug

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic1=[0x00,0x00,0x0F,0x08,0x08,0x08,0x08,0xFF,0x08,0x08,0x08,0x08,0x0F,0x00,0x00,0x00,
0x00,0x00,0xF0,0x20,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0xF0,0x00,0x00,0x00]pic2=[0x00,0x7F,0x40,0x48,0x49,0x49,0x49,0x4F,0x49,0x49,0x49,0x48,0x40,0x7F,0x00,0x00,
0x00,0xFF,0x02,0x12,0x12,0x12,0x12,0xF2,0x12,0x52,0x32,0x12,0x02,0xFF,0x00,0x00]oled.p16(pic1,0,0)
oled.p16(pic2,16,0)
oled.show()
oled.scroll(hScrollOn=0)

oled纵滚

奇葩滚动

这个函数比较复杂可实现斜着动,不同区域各动各的,有点bug

from ssd1306 import SSD1306_I2C
from machine import Pin,I2C
i2c=I2C(0,scl=Pin(5),sda=Pin(4))
oled=SSD1306_I2C(i2c)pic1=[0x00,0x00,0x0F,0x08,0x08,0x08,0x08,0xFF,0x08,0x08,0x08,0x08,0x0F,0x00,0x00,0x00,
0x00,0x00,0xF0,0x20,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0xF0,0x00,0x00,0x00]pic2=[0x00,0x7F,0x40,0x48,0x49,0x49,0x49,0x4F,0x49,0x49,0x49,0x48,0x40,0x7F,0x00,0x00,
0x00,0xFF,0x02,0x12,0x12,0x12,0x12,0xF2,0x12,0x52,0x32,0x12,0x02,0xFF,0x00,0x00]oled.p16(pic1,0,0)
oled.p16(pic2,16,0)
oled.show()
#10个参数。均有默认值
#vScrollOn,是否开启竖直滚动(默认0,关闭竖直滚动;置1开启)
#vStart,竖直滚动开始行
#vEnd,竖直滚动结束行
#vSpeed,竖直滚动速度,数字越大越快
#hScrollOn,是否开启横向滚动(默认开启,置0关闭)
#direction,横滚方向(默认向右,置1向左)
#hSpeed,横滚速度(0-7)
#hScrollStartPage,水平滚动起始页默认0
#hScrollEndPage,水平滚动结束页默认7
#hScrollStartColumn,水平滚动区域的起始列,默认0
#hScrollEndColumn,#水平滚动区域的结束列,默认127
oled.scroll()

oled滚滚滚

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44201.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】如何用队列实现栈?图文详解(LeetCode)

LeetCode链接&#xff1a;225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; 本文默认读者已经掌握栈与队列的基本知识 或者先看我的另一篇博客&#xff1a;【数据结构】栈与队列_字节连结的博客-CSDN博客 做题思路 由于我们使用的是C语言&#xff0c;不能直接使用队…

vue中使用html2canvas+jsPDF实现pdf的导出

导入依赖 html2canvas依赖 npm install html2canvasjspdf依赖 npm install jspdfpdf导出 以导出横向&#xff0c;A4大小的pdf为例 规律&#xff1a;1. html2canvas 中&#xff0c;在保持jsPDF中的宽高不变的情况下&#xff0c;设置html2canvas中的 width 和 height 值越小&a…

npm 不是内部或外部命令,也不是可运行的程序或批处理文件。

遇到问题&#xff1a; 1.遇到问题&#xff1a;npm 不是内部或外部命令&#xff0c;也不是可运行的程序或批处理文件。 2.遇到问题&#xff1a;或者使用npm安装插件时会出现 XXX\node\node_modules\npm不可用 情况 如下图&#xff1a; 分析问题&#xff1a; nodejs在nodejs官网…

分布式ID

分布式ID 背景Snowflake(雪花算法)背景 分布式系统,用什么做为主键呢? uuid 太长(MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。)、 无规律(在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。)SnowflakeLeaf h…

GO学习之 数据库(mysql)

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…

【vue3】同个页面引入多个图表组件实现自适应的方法

首先说明&#xff0c;此方案仅针对vue3项目在同一个页面引入了多个图表组件&#xff0c;因为我发现不能框架不同的引入&#xff0c;resize的写法还不同 window.addEventListener("resize", function() {...// 在此处重新调用即可 }以下是具体写法&#xff1a; 循环…

前端实习第五周周记

前言 每一天做了什么还是要记录一下&#xff0c;不然过两天后就会发现&#xff0c;慢慢遗忘自己的收获与做过的东西。 这周做的是医学检验系统的样本库部分。由于是公司的代码所以不能交代具体&#xff0c;那么久聊一下每天具体做了些什么以及我的一些收获。 周一 周一上午…

【C++】四种强制类型转换

内容来自《C Primer&#xff08;第5版&#xff09;》4.11.3 显示转换、6.4 函数重载、19.2.1 dynamic_cast运算符 目录 1. static_cast 2. const_cast 3. reinterpret_cast 4. dynamic_cast 4.1 指针类型的dynamic_cast 4.2 引用类型的dynamic_cast C语言的强制类型转换&…

Unity进阶–通过PhotonServer实现人物选择和多人同步–PhotonServer(四)

文章目录 Unity进阶–通过PhotonServer实现人物选择和多人同步–PhotonServer(四)服务端客户端 Unity进阶–通过PhotonServer实现人物选择和多人同步–PhotonServer(四) 服务端 服务端结构如下&#xff1a; UserModel using System; using System.Collections.Generic; usin…

Qt 编译使用Bit7z库接口调用7z.dll、7-Zip.dll解压压缩常用Zip、ISO9660、Wim、Esd、7z等格式文件(二)

修改qt5 7zip源码编译及使用(含展示进度)一文中的封装类ZlibHelper代码类&#xff0c;继承多线程&#xff0c;使解压&#xff0c;压缩时进度条不影响界面&#xff0c;同时添加压缩文件中的文件预览功能&#xff0c;建议直接看源码 导读 相关代码内容扩展预览内容时获取文件修改…

深入探究arthas的命令

Arthas是一个Java诊断工具&#xff0c;用于在线诊断Java应用程序&#xff0c;以便更轻松地监控和分析应用程序的性能和行为。Arthas中有许多用于诊断Java应用程序的命令。 1. jvm 和 dashboard 命令的区别&#xff1a; jvm&#xff1a;该命令用于显示当前的JVM信息&#xff0c…

pointnet C++推理部署--tensorrt框架

classification 如上图所示&#xff0c;由于直接export出的onnx文件有两个输出节点&#xff0c;不方便处理&#xff0c;所以编写脚本删除不需要的输出节点193&#xff1a; import onnxonnx_model onnx.load("cls.onnx") graph onnx_model.graphinputs graph.inpu…

【C++】C++入门基础:引用详解

本篇继续分享关于C入门的相关知识&#xff0c;有关命名空间、缺省参数和函数重载的部分欢迎阅读我的上一篇文章【C】C入门基础详解&#xff08;1&#xff09;_王笃笃的博客-CSDN博客 继续我们的学习 引用 在C语言中我们接触过指针&#xff0c;很多人都或多或少为他感到头痛过…

使用SSH隧道将Ubuntu云服务器Jupyter Notebook端口映射到本地

本文主要实现了在Ubuntu云服务器后台运行Jupyter Notebook&#xff0c;并使用SSH隧道将服务器端口映射到本地 1. 生成配置文件 运行以下命令生成Jupyter Notebook的配置文件&#xff1a; jupyter notebook --generate-config这将在用户主目录下生成一个名为.jupyter的文件夹&…

MySQL索引ES索引

MySQL MySQL索引的种类 按照索引列值的唯一性:索引可分为唯一索引和非唯一索引; 唯一索引:此索引的每一个索引值只对应唯一的数据记录,对于单列唯一性索引,这保证单列不包含重复的值。对于多列唯一性索引,保证多个值的组合不重复。主键索引是唯一索引的特定类型。该索引…

【傅里叶级数与傅里叶变换】数学推导——3、[Part4:傅里叶级数的复数形式] + [Part5:从傅里叶级数推导傅里叶变换] + 总结

文章内容来自DR_CAN关于傅里叶变换的视频&#xff0c;本篇文章提供了一些基础知识点&#xff0c;比如三角函数常用的导数、三角函数换算公式等。 文章全部链接&#xff1a; 基础知识点 Part1&#xff1a;三角函数系的正交性 Part2&#xff1a;T2π的周期函数的傅里叶级数展开 P…

【Rust日报】2023-08-18 RustShip:一个新的 Rust 播客

探索 Rust 编译器基准测试套件 在最近关于 Rust 编译器 CI&#xff08;持续集成&#xff09;和基准测试基础设施的文章中&#xff0c;作者承诺写一篇关于运行时基准测试的博客文章&#xff0c;这是 Rust 编译器基准测试套件的新补充。然而&#xff0c;在这样做之前&#xff0c;…

信息熵,信息增益,增益率的理解

西瓜数据集D如下: 编号色泽根蒂敲声纹理脐部触感好瓜1青绿蜷缩浊响清晰凹陷硬滑是2乌黑蜷缩沉闷清晰凹陷硬滑是3乌黑蜷缩浊响清晰凹陷硬滑是4青绿蜷缩沉闷清晰凹陷硬滑是5浅白蜷缩浊响清晰凹陷硬滑是6青绿稍蜷浊响清晰稍凹软粘是7乌黑稍蜷浊响稍糊稍凹软粘是8乌黑稍蜷浊响清晰…

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基…

aardio窗体缩放自动匹配批量生成plus实例

import win.ui; /*DSG{{*/ var winform win.form(text"窗体缩放批量生成plus";right759;bottom469;bgcolor15780518) winform.add( custom{cls"custom";text"自定义控件";left3;top6;right753;bottom460;ah1;aw1;bgcolor15780518;z1} ) /*}}*//…