【傅里叶级数与傅里叶变换】数学推导——3、[Part4:傅里叶级数的复数形式] + [Part5:从傅里叶级数推导傅里叶变换] + 总结


文章内容来自DR_CAN关于傅里叶变换的视频,本篇文章提供了一些基础知识点,比如三角函数常用的导数、三角函数换算公式等。

文章全部链接:
基础知识点
Part1:三角函数系的正交性
Part2:T=2π的周期函数的傅里叶级数展开
Part3:周期为T=2L的函数展开
Part4:傅里叶级数的复数形式
Part5:从傅里叶级数推导傅里叶变换
总结


文章目录

  • Part4:傅里叶级数的复数形式
  • Part5:从傅里叶级数推导傅里叶变换
  • 总结


Part4:傅里叶级数的复数形式

前面的部分得到了对于周期为 T T T的函数,有 L = 2 T L = \frac{2}{T} L=T2其傅里叶级数的展开函数形式:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n ω t + b n s i n n ω t ) a 0 = 2 T ∫ 0 T f ( t ) d t a n = 2 T ∫ 0 T f ( t ) c o s n ω t d t b n = 2 T ∫ 0 T f ( t ) s i n n ω t d t \begin{align} f(t) & = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n cos n \omega t + b_n sin n \omega t \right) \\ a_0 & = \frac{2}{T} \int_{0}^{T} f(t) dt \\ a_n & = \frac{2}{T} \int_{0}^{T} f(t) cos n \omega t dt \\ b_n & = \frac{2} {T} \int_{0}^{T} f(t) sin n \omega t dt \end{align} f(t)a0anbn=2a0+n=1(ancost+bnsinnωt)=T20Tf(t)dt=T20Tf(t)costdt=T20Tf(t)sinnωtdt

在了解傅里叶级数的复数形式之前,需要了解欧拉公式

e i θ = c o s θ + i s i n θ e^{i \theta} = cos \theta + i sin \theta eiθ=cosθ+isinθ

由欧拉公式可以得到:

c o s θ = e i θ + e − i θ 2 s i n θ = − i 2 ( e i θ − e − i θ ) \begin{align} cos \theta = \frac{e^{i \theta } + e^{-i \theta}}{2} \\ sin \theta = - \frac{i}{2} (e^{i \theta } - e^{-i \theta}) \end{align} cosθ=2eiθ+eiθsinθ=2i(eiθeiθ)

计算 c o s θ cos \theta cosθ s i n θ sin \theta sinθ的方法,令 θ = − θ \theta = - \theta θ=θ,代入欧拉公式,组成一个方程组:
{ e i θ = c o s θ + i s i n θ e − i θ = c o s θ − i s i n θ \left\{\begin{matrix} e^{i \theta} = cos \theta + i sin \theta \\ e^{-i \theta} = cos \theta - i sin \theta \end{matrix}\right. {eiθ=cosθ+isinθeiθ=cosθisinθ
两式相加得到 c o s θ cos \theta cosθ,两式相减得到 s i n θ sin \theta sinθ


将复数形式得到的 c o s θ cos \theta cosθ s i n θ sin \theta sinθ代入傅里叶级数展开函数,有:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n 2 ( e i n ω t + e − i n ω t ) − i b n 2 ( e i n ω t − e − i n ω t ) ) = a 0 2 + ∑ n = 1 ∞ ( a n − i b n 2 e i n ω t + a n + i b n 2 e − i n ω t ) = a 0 2 + ∑ n = 1 ∞ a n − i b n 2 e i n ω t + ∑ n = 1 ∞ a n + i b n 2 e − i n ω t \begin{align} f(t) & = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( \frac{a_n}{2} (e^{in \omega t} + e^{-i n \omega t}) - \frac{i b_n} {2} (e^{i n \omega t} - e^{-i n \omega t}) \right) \\ & = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( \frac{a_n - i b_n}{2} e^{in \omega t} + \frac{a _n + i b_n}{2} e^{-i n \omega t}\right) \\ & = \frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n - i b_n}{2} e^{in \omega t} + \sum_{n=1}^{\infty} \frac{a _n + i b_n}{2} e^{-i n \omega t} \end{align} f(t)=2a0+n=1(2an(einωt+einωt)2ibn(einωteinωt))=2a0+n=1(2anibneinωt+2an+ibneinωt)=2a0+n=12anibneinωt+n=12an+ibneinωt

对上式第三项,令 n = − n n=-n n=n,转换为:

f ( t ) = ∑ n = 0 0 a 0 2 e i n ω t + ∑ n = 1 ∞ a n − i b n 2 e i n ω t + ∑ n = − ∞ − 1 a − n + i b − n 2 e i n ω t f(t) = \sum_{n=0}^{0} \frac{a_0}{2} e^{i n \omega t} + \sum_{n=1}^{\infty} \frac{a_n - i b_n}{2} e^{in \omega t} + \sum_{n=- \infty}^{-1} \frac{a _{-n} + i b_{-n} } {2} e^{i n \omega t} f(t)=n=002a0einωt+n=12anibneinωt+n=12an+ibneinωt

可以发现在区间 ( − ∞ , ∞ ) (- \infty, \infty) (,)之间有共同项 e i n ω t e^{i n \omega t} einωt,令共同项的系数为 C n C_n Cn,那么就得到:

f ( t ) = ∑ − ∞ ∞ C n e i n ω t C n = { a 0 2 , n = 0 1 2 ( a n − i b n ) , n = 1 , 2 , 3 , . . . 1 2 ( a − n + i b − n ) , n = − 1 , − 2 , − 3 , . . . f(t) = \sum_{- \infty}^{\infty} C_n e^{in \omega t} \\ C_n = \left\{\begin{matrix} \frac{a_0}{2}, & n=0 \\ \frac{1}{2}\left( a_n - i b_n \right), & n= 1, 2,3,... \\ \frac{1}{2} \left ( a_{-n} + i b_{-n} \right), & n = -1, -2, -3, ... \end{matrix}\right. f(t)=CneinωtCn= 2a0,21(anibn)21(an+ibn)n=0n=1,2,3,...n=1,2,3,...

a 0 a_0 a0 a n a_n an b n b_n bn代入到 C n C_n Cn

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n ω t + b n s i n n ω t ) a 0 = 2 T ∫ 0 T f ( t ) d t a n = 2 T ∫ 0 T f ( t ) c o s n ω t d t b n = 2 T ∫ 0 T f ( t ) s i n n ω t d t \begin{align} f(t) & = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n cos n \omega t + b_n sin n \omega t \right) \\ a_0 & = \frac{2}{T} \int_{0}^{T} f(t) dt \\ a_n & = \frac{2}{T} \int_{0}^{T} f(t) cos n \omega t dt \\ b_n & = \frac{2} {T} \int_{0}^{T} f(t) sin n \omega t dt \end{align} f(t)a0anbn=2a0+n=1(ancost+bnsinnωt)=T20Tf(t)dt=T20Tf(t)costdt=T20Tf(t)sinnωtdt

n = 0 n=0 n=0时,

C n = a 0 2 = 1 2 ⋅ 2 T ∫ 0 T f ( t ) d t = 1 T ∫ 0 T f ( t ) d t C_n = \frac{a_0}{2} = \frac{1}{2} \cdot \frac{2}{T} \int_{0}^{T} f(t)dt = \frac{1}{T} \int_{0}^{T} f(t) dt Cn=2a0=21T20Tf(t)dt=T10Tf(t)dt

n > 0 , n ∈ Z n>0, n \in Z n>0,nZ时,

C n = 1 2 [ 2 T ∫ 0 T f ( t ) c o s n ω t d t − i 2 T ∫ 0 T f ( t ) s i n n ω t d t ] = 1 T ∫ 0 T f ( t ) ( c o s n ω t − s i n n ω t ) d t c o s n ω t − s i n n ω t = c o s ( − n ω t ) + s i n ( − n ω t ) = e − i n ω t C n = 1 T ∫ 0 T f ( t ) e − i n ω t d t C_n = \frac{1}{2}\left[ \frac{2}{T} \int_{0}^{T} f(t) cos n \omega t dt - i \frac{2} {T} \int_{0}^{T} f(t) sin n \omega t dt \right] \\ = \frac{1}{T} \int_{0}^{T} f(t) \left ( cos n \omega t - sin n \omega t \right) dt \\ cos n \omega t - sin n \omega t = cos (- n \omega t) + sin (- n \omega t) = e^{- i n \omega t} \\ C_n = \frac{1}{T} \int_{0}^{T} f(t) e^{- i n \omega t} dt Cn=21[T20Tf(t)costdtiT20Tf(t)sinnωtdt]=T10Tf(t)(costsinnωt)dtcostsinnωt=cos(t)+sin(t)=einωtCn=T10Tf(t)einωtdt

n < 0 , n ∈ Z n<0, n \in Z n<0,nZ时,

C n = 1 2 ( a − n + i b − n ) = 1 2 [ 2 T ∫ 0 T f ( t ) c o s ( − n ω t ) d t + i ⋅ 2 T ∫ 0 T f ( t ) s i n ( − n ω t ) d t ] = 1 T ∫ 0 T f ( t ) [ c o s ( − n ω t ) + s i n ( − n ω t ) ] d t = 1 T ∫ 0 T f ( t ) e − i n ω t C_n = \frac{1}{2} \left ( a_{-n} + i b_{-n} \right) \\ = \frac{1}{2} \left[ \frac{2}{T} \int_{0}^{T} f(t) cos \left( - n \omega t \right) dt + i \cdot \frac{2}{T} \int_{0}^{T} f(t) sin (- n \omega t) dt \right] \\ = \frac{1}{T}\int_{0}^{T} f(t) \left[ cos (- n \omega t) + sin (- n \omega t) \right] dt \\ = \frac{1}{T} \int_{0}^{T} f(t) e^{- i n \omega t} Cn=21(an+ibn)=21[T20Tf(t)cos(t)dt+iT20Tf(t)sin(t)dt]=T10Tf(t)[cos(t)+sin(t)]dt=T10Tf(t)einωt

n = 0 n=0 n=0时,

C n = 1 T ∫ 0 T f ( t ) d t = 1 T ∫ 0 T f ( t ) e − i n ω t d t C_n = \frac{1}{T} \int_{0}^{T} f(t) dt = \frac{1}{T} \int_{0}^{T} f(t) e^{- i n \omega t} dt Cn=T10Tf(t)dt=T10Tf(t)einωtdt

从上面可以看出来,在 ( − ∞ , ∞ ) (- \infty , \infty) (,)区间内, C n C_n Cn可以统一到一个形式: C n = 1 T ∫ 0 T f ( t ) e − i n ω t d t C_n = \frac{1}{T} \int_{0}^{T} f(t) e ^{- i n \omega t}dt Cn=T10Tf(t)einωtdt


总结,对于一个周期为 T T T的函数 f ( t ) = f ( t + T ) f(t) = f(t+T) f(t)=f(t+T),其复数形式的傅里叶展开函数为:
f ( t ) = ∑ − ∞ ∞ C n e i n ω t C n = 1 T ∫ 0 T f ( t ) e − i n ω t d t f(t) = \sum_{- \infty}^{\infty} C_n e^{i n \omega t} \\ C_n = \frac{1}{T} \int_{0}^{T} f(t) e^{- i n \omega t}dt f(t)=CneinωtCn=T10Tf(t)einωtdt


Part5:从傅里叶级数推导傅里叶变换

前面得到了周期函数复数形式的傅里叶展开函数,令 ω 0 = 2 π T \omega _0 = \frac{2 \pi}{T} ω0=T2π ω 0 \omega_0 ω0被称为基频率。

f T ( t ) = ∑ − ∞ ∞ C n e i n ω 0 t C n = 1 T ∫ − T 2 T 2 f T ( t ) e − i n ω 0 t d t 其中 n ∈ Z \begin{align} & f_T(t) = \sum_{- \infty}^{\infty} C_n e^{i n \omega_0 t} \\ & C_n = \frac{1}{T} \int_{- \frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{- i n \omega_0 t}dt \\ & 其中n \in Z \end{align} fT(t)=Cneinω0tCn=T12T2TfT(t)einω0tdt其中nZ

对于一个周期函数,假设其图示如下,横坐标为 t t t,纵坐标为对应的值,这是在时域空间上的图。

在这里插入图片描述

如果采用如下图所示的坐标系,以 n ω 0 n \omega_0 nω0 x x x坐标,实轴和虚轴分别为 z z z y y y坐标,这是在频域空间上的图,也称为频谱图。可能其分布如下(如下值是随机绘制的,不对应上图,假设存在这样的频谱图)。

在这里插入图片描述

令两个频率之间的距离为 Δ ω \Delta \omega Δω,那么 Δ ω = ( n + 1 ) ω 0 − n ω 0 = ω 0 = 2 π T \Delta \omega = (n+1) \omega_0 - n \omega_0 = \omega_0 = \frac{2 \pi}{T} Δω=(n+1)ω0nω0=ω0=T2π,可以得到 1 T = Δ ω 2 π \frac{1}{T} = \frac{\Delta \omega}{2 \pi} T1=2πΔω

当周期 T T T趋近于 ∞ \infty 时,周期函数就变为了非周期函数 lim ⁡ T → ∞ f T ( t ) = f ( t ) \lim_{T \to \infty} f_T(t) = f(t) limTfT(t)=f(t) Δ ω \Delta \omega Δω就变成了0,从而离散函数变为了连续函数。

C n C_n Cn 1 T \frac{1}{T} T1代入到傅里叶级数展开函数:

f T ( t ) = ∑ − ∞ ∞ Δ ω 2 π ∫ − T 2 T 2 f T ( t ) e − i n ω 0 t d t e i n ω 0 t f_T(t) = \sum_{- \infty}^{\infty} \frac{\Delta \omega}{2 \pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i n \omega_0 t} dt e^{i n \omega_0 t} fT(t)=2πΔω2T2TfT(t)einω0tdteinω0t

T → ∞ T \to \infty T时,令 n ω 0 = ω n \omega_0 = \omega nω0=ω ∫ − T 2 T 2 d t → ∫ − ∞ ∞ d t \int_{- \frac{T}{2}}^{\frac{T}{2}} dt \to \int_{- \infty}^{\infty} dt 2T2Tdtdt ∑ − ∞ ∞ Δ ω → ∫ − ∞ ∞ d ω \sum_{- \infty}^{\infty} \Delta \omega \to \int_{- \infty}^{\infty} d \omega Δωdω。代入到上面的式子:

lim ⁡ T → ∞ f T ( t ) = f ( t ) = 1 2 π ∫ − ∞ ∞ ( ∫ − ∞ ∞ f ( t ) e − i ω t d t ) e i ω t d ω \lim_{T \to \infty} f_T(t) = f(t) = \frac{1}{2 \pi} \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} f(t) e^{- i \omega t} dt \right) e^{i \omega t} d \omega TlimfT(t)=f(t)=2π1(f(t)etdt)etdω

中间括号括起来的部分就是傅里叶变换函数 F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t F(\omega) = \int_{- \infty}^{\infty} f(t) e^{- i \omega t} dt F(ω)=f(t)etdt,而 f ( t ) = 1 2 π ∫ − ∞ ∞ f ( T ) e i ω t d ω f(t) = \frac{1}{2 \pi} \int_{- \infty}^{\infty} f(T) e^{i \omega t} d \omega f(t)=2π1f(T)etdω是傅里叶变换的逆变换。


总结

在Part1中,认识到三角函数系的正交性,有:

∫ − π π s i n n x c o s m x = 0 ∫ − π π c o s n x s i n m x = 0 ∫ − π π c o s n x c o s m x = { 0 , m ≠ n 2 π , m = n = 0 π , m = n ≠ 0 ∫ − π π s i n n x c o s m x = { 0 , m ≠ n 或 m = n = 0 π , m = n ≠ 0 \begin{align} & \int_{-\pi}^{\pi} sin n x cos m x = 0 \\ & \int_{- \pi}^{\pi}cos n x sin m x = 0 \\ & \int_{- \pi}^{\pi} cos n x cos m x = \left\{ \begin{matrix} 0 , & m \ne n \\ 2 \pi , & m = n =0 \\ \pi , & m = n \ne 0 \end{matrix} \right. \\ & \int_{- \pi}^{\pi} sin n x cos m x = \left\{ \begin{matrix} 0, & m \ne n 或 m = n =0 \\ \pi , & m = n \ne 0 \end{matrix} \right. \end{align} ππsinnxcosmx=0ππcosnxsinmx=0ππcosnxcosmx= 0,2π,π,m=nm=n=0m=n=0ππsinnxcosmx={0,π,m=nm=n=0m=n=0

在Part2中,推导了 T = 2 π T = 2 \pi T=2π的周期函数的傅里叶级数展开为:

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty}\left( a_n cos nx + b_n sin nx \right) f(x)=2a0+n=1(ancosnx+bnsinnx)

计算 a 0 a_0 a0,对 f ( x ) f(x) f(x)在区间 [ − π , π ] [-\pi, \pi] [π,π]之间积分,得到 a 0 = 1 π ∫ − π π f ( x ) d x a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi}f(x)dx a0=π1ππf(x)dx
计算 a n a_n an,等式两边同乘以 c o s m x cos mx cosmx,然后计算在 [ − π , π ] [- \pi, \pi] [π,π]之间的积分,得到 a n = 1 π ∫ − π π f ( x ) c o s n x d x a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos nx dx an=π1ππf(x)cosnxdx

计算 b n b_n bn,等式两边同乘以 s i n m x sin mx sinmx,然后计算在 [ − π , π ] [-\pi, \pi] [π,π]之间的积分,得到 b n = 1 π ∫ − π π f ( x ) s i n n x d x b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sin nx dx bn=π1ππf(x)sinnxdx

在Part3中,推导了 T = 2 L T=2L T=2L的周期函数的傅里叶级数展开为,令 x = π L t → t = L π x x = \frac{\pi}{L}t \to t = \frac{L}{\pi}x x=Lπtt=πLx,将 x x x代入Part2中的公式,得到:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n π L t + b n s i n n π L t ) a 0 = 1 L ∫ − L L f ( t ) d t a n = 1 L ∫ − L L f ( t ) c o s n π L t d t b n = 1 L ∫ − L L f ( t ) s i n n π L d t \begin{align} & f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n cos \frac{n \pi}{L}t + b_n sin \frac{n \pi}{L}t \right) \\ & a_0 = \frac{1}{L} \int_{-L}^{L} f(t) dt \\ & a_n = \frac{1}{L} \int_{-L}^{L} f(t) cos \frac{n \pi}{L}t dt \\ & b_n = \frac{1}{L} \int_{-L}^{L} f(t) sin \frac{n \pi}{L}dt \end{align} f(t)=2a0+n=1(ancosLt+bnsinLt)a0=L1LLf(t)dtan=L1LLf(t)cosLtdtbn=L1LLf(t)sinLdt

在Part4中,使用欧拉公式,用复指数的形式得到周期为 T T T的周期函数的傅里叶级数展开,该形式使得函数看起来更简洁,经过一系列变换,用 C n C_n Cn替代了上面复杂的系数,令 ω 0 = 2 π T \omega _0 = \frac{2 \pi}{T} ω0=T2π

f ( t ) = ∑ − ∞ ∞ C n e i n ω 0 t C n = 1 T ∫ 0 T f ( t ) e − i n ω 0 t d t f(t) = \sum_{- \infty}^{\infty} C_n e^{i n \omega_0 t} \\ C_n = \frac{1}{T} \int_{0}^{T} f(t) e^{-i n \omega_0 t}dt f(t)=Cneinω0tCn=T10Tf(t)einω0tdt

在Part5中,从傅里叶级数展开函数推导出傅里叶变换及反变换函数。当周期 T T T趋近于 ∞ \infty 时,周期函数会变为非周期函数,此时从离散数据变为了连续数据,令 ω = n ω 0 \omega = n \omega_0 ω=nω0;又有 ∑ − ∞ ∞ ω 0 → ∫ − ∞ ∞ d ω \sum_{- \infty}^{\infty} \omega_0 \to \int_{-\infty}^{\infty}d \omega ω0dω ∫ 0 T d t → ∫ − ∞ ∞ d t \int_{0}^{T} dt \to \int_{- \infty}^{\infty} dt 0Tdtdt,就得到非周期函数的傅里叶级数展开函数为:

f ( t ) = 1 2 π ∫ − ∞ ∞ ( ∫ − ∞ ∞ f ( t ) e − i ω t d t ) e i ω t d ω f(t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \left ( \int_{- \infty}^{\infty} f(t)e ^{- i \omega t} dt \right) e^{i \omega t } d \omega f(t)=2π1(f(t)etdt)etdω

中间括号部分就是傅里叶变换函数$F(\omega) = \int_{- \infty}^{\infty} f(t) e^{-i \omega t} dt ,而 ,而 ,而f(t) = \frac{1}{2 \pi} \int_{- \infty}^{\infty}F(\omega) e^{i \omega t} d \omega$是傅里叶变换的逆变换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44185.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Rust日报】2023-08-18 RustShip:一个新的 Rust 播客

探索 Rust 编译器基准测试套件 在最近关于 Rust 编译器 CI&#xff08;持续集成&#xff09;和基准测试基础设施的文章中&#xff0c;作者承诺写一篇关于运行时基准测试的博客文章&#xff0c;这是 Rust 编译器基准测试套件的新补充。然而&#xff0c;在这样做之前&#xff0c;…

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基…

aardio窗体缩放自动匹配批量生成plus实例

import win.ui; /*DSG{{*/ var winform win.form(text"窗体缩放批量生成plus";right759;bottom469;bgcolor15780518) winform.add( custom{cls"custom";text"自定义控件";left3;top6;right753;bottom460;ah1;aw1;bgcolor15780518;z1} ) /*}}*//…

UML基础模型

目录 1.抽象类2.接口3.继承4.实现接口5.关联关系6.聚合关系7.合成&#xff08;组合&#xff09;关系8.依赖关系 1.抽象类 矩形框代表一个类&#xff08;Class&#xff09;。 类图分为三层&#xff1a; 第一层显示类的名称&#xff0c;如果是抽象类&#xff0c;就用斜体显示&am…

操作系统的体系结构、内核、虚拟机

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaweb 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 操作系统结构 一、操作系统体系结构1.1操作系统的内核1.1.…

TiDB 多集群告警监控-中章-融合多集群 Grafana

作者&#xff1a; longzhuquan 原文来源&#xff1a; https://tidb.net/blog/ac730b0f 背景 随着公司XC改造步伐的前进&#xff0c;越来越多的业务选择 TiDB&#xff0c;由于各个业务之间需要物理隔离&#xff0c;避免不了的 TiDB 集群数量越来越多。虽然每套 TiDB 集群均有…

Gateway网关路由以及predicates用法(项目中使用场景)

1.Gatewaynacos整合微服务 服务注册在nacos上&#xff0c;通过Gateway路由网关配置统一路由访问 这里主要通过yml方式说明&#xff1a; route: config: #type:database nacos yml data-type: yml group: DEFAULT_GROUP data-id: jeecg-gateway-router 配置路由&#xff1a;…

宁德时代与陕汽签署十年战略合作协议,助力商用车电动化进程

据报道&#xff0c;宁德时代新能源科技股份有限公司与陕西汽车控股集团有限公司已经签署了一项为期十年的战略合作协议。双方的合作旨在推动商用车电池技术的发展&#xff0c;并面向商用车全领域应用。 这次战略合作具有重要意义&#xff0c;为宁德时代和陕汽启动了全面合作的序…

2021年3月全国计算机等级考试真题(C语言二级)

2021年3月全国计算机等级考试真题&#xff08;C语言二级&#xff09; 第1题 算法空间复杂度的度量方法是&#xff08;&#xff09; A. 算法程序的长度 B. 算法所处理的数据量 C. 执行算法所需要的工作单元 D. 执行算法所需要的存储空间 正确答案&#xff1a;D 第2题 下列叙…

【自创】关于前端js的“嵌套地狱”的遍历算法

欢迎大家关注我的CSDN账号 欢迎大家关注我的哔哩哔哩账号&#xff1a;卢淼儿的个人空间-卢淼儿个人主页-哔哩哔哩视频 此saas系统我会在9月2号之前&#xff0c;在csdn及哔哩哔哩上发布成套系列教学视频。敬请期待&#xff01;&#xff01;&#xff01; 首先看图 这是我们要解…

Spring Boot 知识集锦之Spring-Batch批处理组件详解

文章目录 0.前言1.参考文档2.基础介绍2.1. 核心组件 3.步骤3.1. 引入依赖3.2. 配置文件3.3. 核心源码 4.示例项目5.总结 0.前言 背景&#xff1a; 一直零散的使用着Spring Boot 的各种组件和特性&#xff0c;从未系统性的学习和总结&#xff0c;本次借着这个机会搞一波。共同学…

无涯教程-TensorFlow - TensorBoard可视化

TensorFlow包含一个可视化工具&#xff0c;称为TensorBoard&#xff0c;它用于分析数据流图&#xff0c;还用于了解机器学习模型。 TensorBoard的重要功能包括查看有关垂直对齐的任何图形的参数和详细信息的不同类型统计的视图。 深度神经网络包括多达36&#xff0c;000个节点…

HCIP——VLAN实验2

一.实验要求 1.PC1/3的接口均为access模式&#xff0c;且属于van2&#xff0c;在同一网段 2.PC2/4/5/6的IP地址在同一网段&#xff0c;与PC1/3不在同一网段 3.PC2可以访问4/5/6&#xff0c;PC4不能访问5/6&#xff0c;PC5不能访问PC6 4.所有PC通过DHCP获取ip地址&#xff0c;PC…

《合成孔径雷达成像算法与实现》Figure3.10

代码复现如下&#xff1a; clc clear close all% 参数设置 TBP 100; % 时间带宽积 T 7.2e-6; % 脉冲持续时间 t_0 1e-6; % 脉冲回波时延% 参数计算 B TBP/T; …

unity 之Transform组件(汇总)

文章目录 理论指导结合例子 理论指导 当在Unity中处理3D场景中的游戏对象时&#xff0c;Transform 组件是至关重要的组件之一。它管理了游戏对象的位置、旋转和缩放&#xff0c;并提供了许多方法来操纵和操作这些属性。以下是关于Transform 组件的详细介绍&#xff1a; 位置&a…

C++进阶 特殊类的设计

本篇博客介绍&#xff1a;介绍几种特殊的类 特殊类的设计 设计一个类不能被拷贝设计一个类 只能在堆上创建对象设计一个类 只能在栈上创造对象设计一个类不能被继承单例模式饿汉模式懒汉模式单例模式对象的释放问题 总结 设计一个类不能被拷贝 我们的拷贝只会发生在两个场景当…

利用POM完成脚本分离实现企业级自动化(POM设计模式+页面的框架封装+测试报告截图)

利用POM完成脚本分离实现企业级自动化&#xff08;POM设计模式页面的框架封装测试报告截图&#xff09; 项目-测试-手工测试 项目-测试-手工测试 1.了解需求&#xff1b; 2.编写测试用例&#xff08;开始&#xff09;——功能测试组会去做的事情 3.执行测试用例——发送测试报…

Mac 开发 Tang Nano FPGA 指南(使用终端和使用 VS Code 和插件,适用所有 Gowin FPGA)

最近收到了一个 Tang nano 9K FPGA开发板&#xff0c;就想借此机会研究一下。 官方文档里介绍如果想使用高云的 FPGA&#xff0c;就需要使用 GOWIN IDE&#xff0c;但是需要申请 license 提交一堆资料&#xff0c;我是别人送的就不太方便让别人弄。加上 IDE 其实并不是很适合学…

C#语音播报问题之 无法嵌入互操作类型SpVoiceClass,请改用适用的窗口

C#语音播报问题之 无法嵌入互操作类型SpVoiceClass&#xff0c;请改用适用的窗口 解决办法如下&#xff1a; 只需要将引入的Interop.SpeechLib的属性嵌入互操作类型改为false 改为false 即可解决&#xff01;

SpringCloud新人入门手册

一、SpringBoot流程图 二、创建一个单pom项目改为父子pom项目 0、检查idea是否在父模块pom中生成子模块 <modules><module>eureka</module></modules> 1、子模块pom.xml添加 <dependencies><dependency><groupId>org.springframew…