1、模型构建
1.1 构建生成器
# 导入软件包
import torch
import torch.nn as nnclass Generator(nn.Module):def __init__(self, z_dim=20, image_size=256):super(Generator, self).__init__()self.layer1 = nn.Sequential(nn.ConvTranspose2d(z_dim, image_size * 32,kernel_size=4, stride=1),nn.BatchNorm2d(image_size * 32),nn.ReLU(inplace=True))self.layer2 = nn.Sequential(nn.ConvTranspose2d(image_size * 32, image_size * 16,kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(image_size * 16),nn.ReLU(inplace=True))self.layer3 = nn.Sequential(nn.ConvTranspose2d(image_size * 16, image_size * 8,kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(image_size * 8),nn.ReLU(inplace=True))self.layer4 = nn.Sequential(nn.ConvTranspose2d(image_size * 8, image_size *4,kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(image_size * 4),nn.ReLU(inplace=True))self.layer5 = nn.Sequential(nn.ConvTranspose2d(image_size * 4, image_size * 2,kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(image_size * 2),nn.ReLU(inplace=True))self.layer6 = nn.Sequential(nn.ConvTranspose2d(image_size * 2, image_size,kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(image_size),nn.ReLU(inplace=True))self.last = nn.Sequential(nn.ConvTranspose2d(image_size, 3, kernel_size=4,stride=2, padding=1),nn.Tanh())# 注意:因为是黑白图像,所以只有一个输出通道def forward(self, z):out = self.layer1(z)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.layer5(out)out = self.layer6(out)out = self.last(out)return outif __name__ == "__main__":import matplotlib.pyplot as pltG = Generator(z_dim=20, image_size=256)# 输入的随机数input_z = torch.randn(1, 20)# 将张量尺寸变形为(1,20,1,1)input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)#输出假图像fake_images = G(input_z)print(fake_images.shape)img_transformed = fake_images[0].detach().numpy().transpose(1, 2, 0)plt.imshow(img_transformed)plt.show()
1.1 构建判别器
class Discriminator(nn.Module):def __init__(self, z_dim=20, image_size=256):super(Discriminator, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(3, image_size, kernel_size=4,stride=2, padding=1),nn.LeakyReLU(0.1, inplace=True))#注意:因为是黑白图像,所以输入通道只有一个self.layer2 = nn.Sequential(nn.Conv2d(image_size, image_size*2, kernel_size=4,stride=2, padding=1),nn.LeakyReLU(0.1, inplace=True))self.layer3 = nn.Sequential(nn.Conv2d(image_size*2, image_size*4, kernel_size=4,stride=2, padding=1),nn.LeakyReLU(0.1, inplace=True))self.layer4 = nn.Sequential(nn.Conv2d(image_size*4, image_size*8, kernel_size=4,stride=2, padding=1),nn.LeakyReLU(0.1, inplace=True))self.layer5 = nn.Sequential(nn.Conv2d(image_size*8, image_size*16, kernel_size=4,stride=2, padding=1),nn.LeakyReLU(0.1, inplace=True))self.layer6 = nn.Sequential(nn.Conv2d(image_size*16, image_size*32, kernel_size=4,stride=2, padding=1),nn.LeakyReLU(0.1, inplace=True))self.last = nn.Conv2d(image_size*32, 1, kernel_size=4, stride=1)def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.layer5(out)out = self.layer6(out)out = self.last(out)return outif __name__ == "__main__":#确认程序执行D = Discriminator(z_dim=20, image_size=64)#生成伪造图像input_z = torch.randn(1, 20)input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)fake_images = G(input_z)#将伪造的图像输入判别器D中d_out = D(fake_images)#将输出值d_out乘以Sigmoid函数,将其转换成0~1的值print(torch.sigmoid(d_out))
2、数据集构建
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), ".")))
import time
from PIL import Image
import torch
import torch.utils.data as data
import torch.nn as nnfrom torchvision import transforms
from model.DCGAN import Generator, Discriminator
from matplotlib import pyplot as pltdef make_datapath_list(root):"""创建用于学习和验证的图像数据及标注数据的文件路径列表。 """train_img_list = list() #保存图像文件的路径for img_idx in range(200):img_path = f"{root}/img_7_{str(img_idx)}.jpg"train_img_list.append(img_path)img_path = f"{root}/img_8_{str(img_idx)}.jpg"train_img_list.append(img_path)return train_img_listclass ImageTransform:"""图像的预处理类"""def __init__(self, mean, std):self.data_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])def __call__(self, img):return self.data_transform(img)class GAN_Img_Dataset(data.Dataset):"""图像的 Dataset 类,继承自 PyTorchd 的 Dataset 类"""def __init__(self, file_list, transform):self.file_list = file_listself.transform = transformdef __len__(self):'''返回图像的张数'''return len(self.file_list)def __getitem__(self, index):'''获取经过预处理后的图像的张量格式的数据'''img_path = self.file_list[index]img = Image.open(img_path) # [ 高度 ][ 宽度 ] 黑白# 图像的预处理img_transformed = self.transform(img)return img_transformed# 创建DataLoader并确认执行结果# 创建文件列表
root = "./img_78"
train_img_list = make_datapath_list(root)# 创建Dataset
mean = (0.5)
std = (0.5)
train_dataset = GAN_Img_Dataset(file_list=train_img_list, transform=ImageTransform(mean, std)
)# 创建DataLoader
batch_size = 2
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True
)# 确认执行结果
batch_iterator = iter(train_dataloader) # 转换为迭代器
imges = next(batch_iterator) # 取出位于第一位的元素
print(imges.size()) # torch.Size([64, 1, 64, 64])
数据请在访问链接获取:
3、train接口实现
def train_model(G, D, dataloader, num_epochs):# 确认是否能够使用GPU加速device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("使用设备:", device)# 设置最优化算法g_lr, d_lr = 0.0001, 0.0004beta1, beta2 = 0.0, 0.9g_optimizer = torch.optim.Adam(G.parameters(), g_lr, [beta1, beta2])d_optimizer = torch.optim.Adam(D.parameters(), d_lr, [beta1, beta2])# 定义误差函数criterion = nn.BCEWithLogitsLoss(reduction='mean')# 使用硬编码的参数z_dim = 20mini_batch_size = 8# 将网络载入GPU中G.to(device)D.to(device)G.train() # 将模式设置为训练模式D.train() # 将模式设置为训练模式# 如果网络相对固定,则开启加速torch.backends.cudnn.benchmark = True# 图像张数num_train_imgs = len(dataloader.dataset)batch_size = dataloader.batch_size# 设置迭代计数器iteration = 1logs = []# epoch循环for epoch in range(num_epochs):# 保存开始时间t_epoch_start = time.time()epoch_g_loss = 0.0 # epoch的损失总和epoch_d_loss = 0.0 # epoch的损失总和print('-------------')print('Epoch {}/{}'.format(epoch, num_epochs))print('-------------')print('(train)')# 以minibatch为单位从数据加载器中读取数据的循环for imges in dataloader:# --------------------# 1.判别器D的学习# --------------------# 如果小批次的尺寸设置为1,会导致批次归一化处理产生错误,因此需要避免if imges.size()[0] == 1:continue# 如果能使用GPU,则将数据送入GPU中imges = imges.to(device)# 创建正确答案标签和伪造数据标签# 在epoch最后的迭代中,小批次的数量会减少mini_batch_size = imges.size()[0]label_real = torch.full((mini_batch_size,), 1).to(device)label_fake = torch.full((mini_batch_size,), 0).to(device)# 对真正的图像进行判定d_out_real = D(imges)# 生成伪造图像并进行判定input_z = torch.randn(mini_batch_size, z_dim).to(device)input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)fake_images = G(input_z)d_out_fake = D(fake_images)# 计算误差d_loss_real = criterion(d_out_real.view(-1), label_real.to(torch.float))d_loss_fake = criterion(d_out_fake.view(-1), label_fake.to(torch.float))d_loss = d_loss_real + d_loss_fake# 反向传播处理g_optimizer.zero_grad()d_optimizer.zero_grad()d_loss.backward()d_optimizer.step()# --------------------# 2.生成器G的学习# --------------------# 生成伪造图像并进行判定input_z = torch.randn(mini_batch_size, z_dim).to(device)input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)fake_images = G(input_z)d_out_fake = D(fake_images)# 计算误差g_loss = criterion(d_out_fake.view(-1), label_real.to(torch.float))# 反向传播处理g_optimizer.zero_grad()d_optimizer.zero_grad()g_loss.backward()g_optimizer.step()# --------------------# 3.记录结果# --------------------epoch_d_loss += d_loss.item()epoch_g_loss += g_loss.item()iteration += 1# epoch的每个phase的loss和准确率t_epoch_finish = time.time()print('-------------')print('epoch {} || Epoch_D_Loss:{:.4f} ||Epoch_G_Loss:{:.4f}'.format(epoch, epoch_d_loss / batch_size, epoch_g_loss / batch_size))print('timer: {:.4f} sec.'.format(t_epoch_finish - t_epoch_start))t_epoch_start = time.time()return G, D
4、训练
G = Generator(z_dim=20, image_size=64)
D = Discriminator(z_dim=20, image_size=64)
# 定义误差函数
criterion = nn.BCEWithLogitsLoss(reduction='mean')
num_epochs = 200
G_update, D_update = train_model(G, D, dataloader=train_dataloader, num_epochs=num_epochs
)
5、测试
# 将生成的图像和训练数据可视化
# 反复执行本单元中的代码,直到生成感觉良好的图像为止device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 生成用于输入的随机数
batch_size = 8
z_dim = 20
fixed_z = torch.randn(batch_size, z_dim)
fixed_z = fixed_z.view(fixed_z.size(0), fixed_z.size(1), 1, 1)# 生成图像
fake_images = G_update(fixed_z.to(device))# 训练数据
imges = next(iter(train_dataloader)) # 取出位于第一位的元素# 输出结果
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):# 将训练数据放入上层plt.subplot(2, 5, i + 1)plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')# 将生成数据放入下层plt.subplot(2, 5, 5 + i + 1)plt.imshow(fake_images[i][0].cpu().detach().numpy(), 'gray')