【POJ - 3352】Road Construction(Tarjan,边双连通分量)

题干:

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, vand w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

Output

One line, consisting of an integer, which gives the minimum number of roads that we need to add.

Sample Input

Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10Sample Input 2
3 3
1 2
2 3
1 3

Sample Output

Output for Sample Input 1
2Output for Sample Input 2
0

题目大意:

某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,任意2个旅游景点之间有路径连通(注意不一定是直接连通)。而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施。

道路部门每次只会选择一条道路施工,在该条道路施工完毕前,其他道路依然可以通行。然而有道路部门正在施工的道路,在施工完毕前是禁止游客通行的。这就导致了在施工期间游客可能无法到达一些景点。

为了在施工期间所有旅游景点依然能够正常对游客开放,该企业决定搭建一些临时桥梁,使得不管道路部门选在哪条路进行施工,游客都能够到达所有旅游景点。给出当下允许通行的R条道路,问该企业至少再搭建几条临时桥梁,才能使得游客无视道路部门的存在到达所有旅游景点?

一句话题意:给一个无向连通图,至少添加几条边使得去掉图中任意一条边不改变图的连通性(即使得它变为边双连通图)。

解题报告:(链接)

首先建立模型:

       给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图。

       模型很简单,正在施工的道路我们可以认为那条边被删除了。那么一个图G能够在删除任意一条边后,仍然是连通的,当且仅当图G至少为双连通的。

       PS:不要问我为什么不是3-连通、4-连通...人家题目问“至少添加几条边”好不...

       显然,当图G存在桥(割边)的时候,它必定不是双连通的。桥的两个端点必定分别属于图G的两个【边双连通分量】(注意不是点双连通分量),一旦删除了桥,这两个【边双连通分量】必定断开,图G就不连通了。但是如果在两个【边双连通分量】之间再添加一条边,桥就不再是桥了,这两个【边双连通分量】之间也就是双连通了。

       那么如果图G有多个【边双连通分量】呢?至少应该添加多少条边,才能使得任意两个【边双连通分量】之间都是双连通(也就是图G是双连通的)?

       这个问题就是本题的问题。要解决这个问题:

1、  首先要找出图G的所有【边双连通分量】。

Tarjan算法用来寻找图G的所有【边双连通分量】是最简单有效的方法,因为Tarjan算法在DFS过程中会对图G所有的结点都生成一个Low值,而由于题目已表明任意两个结点之间不会出现重边,因此Low值相同的两个结点必定在同一个【边双连通分量】中!  (如果是有重边的话,那么不同的low值是可能是属于同一个边双连通分量的,这个时候就要通过其他方法去求解边双连通分量。不过这不是本题要讨论的)

2、  把每一个【边双连通分量】都看做一个点(即【缩点】)

也有人称【缩点】为【块】,都是一样的。其实缩点不是真的缩点,只要利用Low值对图G的点分类处理,就已经缩点了。

以样例1为例,样例1得到的图G为上左图,

其中Low[4]=Low[9]=Low[10]

       Low[3]=Low[7]=Low[8]

       Low[2]=Low[5]=Low[6]

       Low[1]独自为政....

把Low值相同的点划分为一类,每一类就是一个【边双连通分量】,也就是【缩点】了,不难发现,连接【缩点】之间的边,都是图G的桥,那么我们就得到了上右图以缩点为结点,已桥为树边所构造成的树。

3、  问题再次被转化为“至少在缩点树上增加多少条树边,使得这棵树变为一个双连通图”。

首先知道一条等式:

若要使得任意一棵树,在增加若干条边后,变成一个双连通图,那么

至少增加的边数 =( 这棵树总度数为1的结点数 + 1 )/ 2

具体做法如下:

统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。

那么我们只需要 求缩点树中中度数为1的结点数(即叶子数)有多少就可以了。

4、  求出所有缩点的度数的方法

两两枚举图G的直接连通的点,只要这两个点不在同一个【缩点】中,那么它们各自所在的【缩点】的度数都+1。注意由于图G时无向图,这样做会使得所有【缩点】的度数都是真实度数的2倍,必须除2后再判断叶子。


 但是其实这个题解包括下面这个代码都是错误的,因为不能通过看low值是否相等来判断是否在一个bcc中。具体代码应该看POJ - 3177,里面解释的比较详细了。

AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define F first
#define S second
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
typedef pair<int,int> PII;
const int MAX = 2e5 + 5;
vector<int> vv[MAX];
int n,m;
int dfn[MAX],low[MAX],out[MAX];
int stk[MAX],index,clk,scc;
void init() {for(int i = 1; i<=n; i++) {vv[i].clear();dfn[i]=low[i]=out[i]=0;}clk = index = scc = 0;
}
void tarjan(int x,int rt) {dfn[x] = low[x] = ++clk;int up = vv[x].size();for(int i = 0; i<up; i++) {int v = vv[x][i];if(v == rt) continue;if(dfn[v] == 0) {tarjan(v,x);low[x] = min(low[x],low[v]);}else low[x] = min(low[x],dfn[v]);}
}
int main()
{while(~scanf("%d",&n)) {scanf("%d",&m);init();for(int u,v,i = 1; i<=m; i++) {scanf("%d%d",&u,&v);vv[u].pb(v);vv[v].pb(u);}for(int i = 1; i<=n; i++) {if(dfn[i] == 0) tarjan(i,-1);//因为题目保证是连通图所以其实可以直接tarjan(1,-1)的 }for(int up,u = 1; u<=n; u++) {up = vv[u].size();for(int v,j = 0; j<up; j++) {v = vv[u][j];//图G中Low值相同的两个点必定在同一个边双连通分量(即同一个缩点)中if(low[u] == low[v]) continue;//检查i、j是否不在同一个缩点中out[low[u]]++;out[low[v]]++;//注意是对缩点操作,不是对原图的点}}int ans = 0;//记录总度数=1(叶子)的缩点for(int i = 1; i<=n; i++) {if(out[i] == 2) ans++;//由于是无向图,因此每个缩点的度都重复计算了2次,因此度数==2才是叶子结点}printf("%d\n",(ans+1)/2);//将一棵树连成一个边双连通分量至少需要添加的边数=(叶子节点数+1)/2}return 0 ;
}

 

这里注意理解一下LOW的意思,因为讨论的都是无向图,所以下面我们说的含义也都是在无向图的基础上讨论的,定义上说,LOW[cur]代表:cur点可以向上回溯到的最早的一个点的DFN值。但是我想说,严格来讲,应该代表从另一条路径上可以向上回溯到的最早的一个点的DFN值,这里另一条路径就是代表不是dfs来的这条路径,而是其他路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/440148.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习简易入门-附推荐学习资料

目录 &#xff08;1&#xff09;机器学习正规学习路线 &#xff08;2&#xff09;机器学习快速入门 &#xff08;3&#xff09;总结 感谢黄海广博士的分享 原创&#xff1a; 机器学习初学者 机器学习初学者 今天 机器学习如何入门&#xff1f;目前没有明确的答案。本站面向…

C++11中的std::function

原文地址&#xff1a;http://www.jellythink.com/archives/771 看看这段代码 先来看看下面这两行代码&#xff1a; std::function<void(EventKeyboard::KeyCode, Event*)> onKeyPressed; std::function<void(EventKeyboard::KeyCode, Event*)> onKeyReleased; 这两…

【HDU - 3394】Railway(点双连通分量,Tarjan算法,思维tricks)

题干&#xff1a; There are some locations in a park, and some of them are connected by roads. The park manger needs to build some railways along the roads, and he would like to arrange tourist routes to each circuit. If a railway belongs to more than one …

飞机大战(简易版)

一、游戏分析 飞机大战中的主要“角色”有&#xff1a; 1.英雄 2.敌方飞机 3.英雄发射的子弹 我们需要控制的有&#xff1a; 1.绘制屏幕内的角色 2.控制角色的逻辑&#xff0c;比如&#xff1a;敌方飞机与我方飞机的碰撞检测&#xff0c;我方飞机发射的子弹与敌方飞机之间的碰撞…

在Ubuntu上安装Keras深度学习框架

目录 1&#xff09;安装pip 2&#xff09;安装Python科学套件 3&#xff09;安装TensorFlow 4&#xff09;安装keras 5&#xff09;安装Jupyter Notebook 6&#xff09;运行Keras 本文介绍如何在Ubuntu上安装Keras深度学习框架。 1&#xff09;安装pip 安装pip包&#…

【POJ - 1523】SPF(Tarjan求割点,求分割成的连通块数,模板题,tricks)

题干&#xff1a; Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still…

机器学习笔记(2):单变量线性回归

目录 1&#xff09;Model representation 2&#xff09;Cost function 3&#xff09;Cost function intuition 1 4&#xff09;Cost function intuition2 5&#xff09;Gradient descent 6&#xff09;Gradient descent intuition 7&#xff09;Gradient descent for li…

安装VMware tools

点击“虚拟机” 安装VMware tools提取图中文件到“下载” 提取登入root 进入 cd 下载/vmware-tools-distrib 执行 ./vmware-install-pl 输入yes或者点击“enter”出现图中&#xff0c;即为成功安装

Keras入门实战(1):MNIST手写数字分类

目录 1)首先我们加载Keras中的数据集 2&#xff09;网络架构 3&#xff09;选择编译(compile参数) 4&#xff09;准备图像数据 5) 训练模型 6&#xff09;测试数据 前面的博客中已经介绍了如何在Ubuntu下安装Keras深度学习框架。 现在我们使用 Keras 库来学习手写数字分…

【BZOJ - 2574】[Poi1999] Store-Keeper(点双连通分量,求割点,记忆化bfs)

题干&#xff1a; 有一个仓库被分成n*m 个矩形区域&#xff0c;如果两个区域有一条公共边&#xff0c;则被认为这两个区域相邻。包裹都放在一个区域中&#xff0c;剩余的区域或者空闲或者被集装箱占有&#xff0c;这是因为集装箱太重&#xff0c;仓库管理员不能将集装箱搬走。…

机器学习笔记(3):线性代数回顾

目录 1&#xff09;Matrices and vectors 2&#xff09;Addition and scalar multiplication 3&#xff09;Matrix-vector multiplication 4&#xff09;Matrix-matrix multiplication 5&#xff09;Matrix multiplication properties 6&#xff09;Inverse and transpos…

hadoop 安装

Hadoop单机和伪分布式安装 更新apt 用root用户登录 先更新一下 apt apt-get update然后安装vim apt-get install vim安装VMware tools tools 安装 安装SSH、配置SSH无密码登陆 单节点模式都需要用到 SSH 登陆&#xff0c;Ubuntu 默认已安装了 SSH client&#xff0c;此…

机器学习笔记(4):多变量线性回归

目录 1&#xff09;Multiple Features 2&#xff09;Gradient descent for multiple variables 3&#xff09;Gradient descent in practice 1: Feature Scaling 4&#xff09;Gradient descent in pratice2: Learning rate 5&#xff09;Features and polynomial regress…

zookeeper单节点部署

hadoop 安装 在/install-package目录下查看zookeeper的安装包 本文中安装的是zookeeper-3.4.12.tar.gz 下方为百度云链接 链接&#xff1a;https://pan.baidu.com/s/1bzq4ILH41owtS__3tBCcRQ 提取码&#xff1a;6q4r 把下载好的zookeeper-3.4.12.tar.gz 放到/install-packa…

机器学习笔记(五):逻辑回归

目录 1&#xff09;Classification 2&#xff09;Hypothesis Representation 3&#xff09;Decision boundary 4&#xff09;Cost function 5&#xff09;Simplified cost function and gradient descent 6&#xff09;Multi-class classification:One-vs-all 7&#xf…

xrdp完美实现Windows远程访问Ubuntu 16.04

前言&#xff1a; 在很多场景下&#xff0c;我们需要远程连接到Linux服务器(本文是Ubuntu)&#xff0c;传统的连接主要分为两种。 第一种&#xff1a;通过SSH服务&#xff08;使用xshell等工具&#xff09;来远程访问&#xff0c;编写终端命令&#xff0c;不过这个是无界面的&a…

机器学习笔记(六):正则化

目录 1&#xff09;The problem of overfitting 2&#xff09;Cost function 3&#xff09;Regularized linear regression 4&#xff09;Regularized logistic regression 我们已经学习了线性回归和逻辑回归算法&#xff0c;已经可以有效解决很多问题&#xff0c;但是在实…

Hbase单节点安装

zookeeper单节点部署 实验环境 操作系统&#xff1a;Ubuntu 16.04 Hadoop&#xff1a;Hadoop 2.7.5 Zookeeper&#xff1a;zookeeper 3.4.12 Java&#xff1a;java version 1.8.0 到/install-package目录下查看hbase安装包 #>ls /install-package本文中用的是hbase-1…

机器学习笔记(七):神经网络:表示

目录 1&#xff09;Non-linear hypotheses 2&#xff09;Model representation 1 3&#xff09;Model representation 2 4&#xff09;Examples and intuitions 1 5&#xff09;Examples and intuitions 2 6&#xff09;Multi-class classification 1&#xff09;Non-lin…

ROS入门_1.10 理解ROS服务和参数

目录 ROS Services使用rosservice rosservice listrosservice typerosservice call Using rosparam rosparam listrosparam set and rosparam getrosparam dump and rosparam load 本教程假设从前一教程启动的turtlesim_node仍在运行&#xff0c;现在我们来看看turtlesim提供了…