机器学习笔记(十):机器学习系统的设计

目录

1)Prioritizing what to work on:Spam classification example

2)Error analysis

3)Error metrics for skewed classes

4)Trading off precision and recall

5)Data for machine learning


下面将学习到在构建大型机器学习系统时有用的方法,数学性不会很强,但是也很使用。来看一个垃圾邮件分类器。

1)Prioritizing what to work on:Spam classification example

首先我们构建一个垃圾分类器:

我们接下来可以按照以下方法尝试:

2)Error analysis

除了学习曲线外,误差分析也是很有用的工具。构建一个学习算法的推荐方法为:

3)Error metrics for skewed classes

类偏斜问题表现为我们的训练集中有非常多的同一类的实例,只是很少或没有其他类的实例。来看我们最初的癌症诊断的例子:

我们训练的逻辑回归模型比我们非学习来的算法准确率还低,此时误差大小不能视为评判算法的依据。

我们要学习到两个重要指标:准确率和召回率

准确率: P =\frac{TP}{TP+FP}

召回率:R=\frac{TP}{TP+FN}

4)Trading off precision and recall

还是以癌症检查的例子来说明情况:下图显示了我们如何改变阈值提高准确率和召回率:

但在实际中我们一般使用 F1值 来作为判别标准:

5)Data for machine learning

下图显示了数据量大小对算法性能的影响:

下面介绍了如何解决高偏差(特征足够多)和高方差问题(庞大训练集)的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/440092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【洛谷 - P1345 [USACO5.4]】奶牛的电信(网络流最小割,拆点)

题干: 题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流。这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c),且a1与a2相连,a2与…

机器学习笔记(十一):支持向量机

目录 1)Optimization objective 2)Large Margin Intuition 3)Kernels 1 4)Kernels II 5)Using an SVM 注:这一章SVM可能有点难理解,强烈建议大家把本章的编程作业做了。 1)Opt…

ros中的坐标系,

ros中的坐标系,主要包括: map,odom,base_link(base_footprint) 以及如laser,camera等传感器的坐标系; 这些坐标系间的关系可以用下图表示: 这是一个有向图,图中涉及四个坐标系&#…

【Gym - 101061F】Fairness(dp,思维)

题干: Dwik and his brother Samir both received scholarships from a famous university in India. Their father, Besher, wants to send some money with each of them. Besher has n coins, the ith coin has a value of ai. He will distribute these coins…

(2)连续存储数组的方法

目录 连续存储的代表应用:数组 1)结构体的定义: 2)基本操作 对数据进行初始化 判断数组是否为空 输出数组 判断数组是否满 追加元素 插入数组元素 删除数组元素 逆序 对数组进行排序 这篇笔记是根据郝斌老师的上课讲义…

什么是欧拉角/姿态角?

用一句话说,欧拉角就是物体绕坐标系三个坐标轴(x,y,z轴)的旋转角度。 在这里,坐标系可以是世界坐标系,也可以是物体坐标系,旋转顺序也是任意的,可以是xyz,xzy,yxz,zxy,yzx,zyx中的任何一种,甚至…

机器学习笔记(十二):聚类

目录 1)Unsupervised learning introduction 2)K-means algorithm 3)Optimization objective 4)Random initialization 5)Choosing the number of clusters 1)Unsupervised learning introduction 下…

Linux下root登陆mysql

错误如下: 1.停止mysql服务 #service mysql stop2.进入到skip-grant-tables模式: #mysqld_safe --skip-grant-tables3.root连接mysql数据库: #mysql -uroot -p如出现如下错误: 其实,原本就没有这个目录&#xff1…

机器学习笔记(十三):降维

目录 1)Motivation 1:Data Compression 2)Motivation 2: Data Visualization 3)Principal Component Analysis problem formulation 4)Principal Component Analysis algorithm 5)Advice for applying PCA 1&…

Django框架(展示图书信息简易版)

Linux环境下 创建虚拟环境 在python3中,创建虚拟环境 mkvirtualenv -p python3 虚拟机名称 mkvirtualenv -p python3 py_django查看创建的虚拟环境 workon退出当前的虚拟环境 deactivate 删除虚拟环境(不要做) rmvirtualenv 虚拟机名称 …

吴恩达机器学习作业(五):支持向量机

目录 1)数据预处理 2)Scikit-learn支持向量机 3)决策边界比较 4)非线性SVM 5)最优超参数 6)垃圾邮件过滤器 在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分…

一些关于ROS中move_base的理解

move_base是ROS下关于机器人路径规划的中心枢纽。它通过订阅激光雷达、map地图、amcl的定位等数据,然后规划出全局和局部路径,再将路径转化为机器人的速度信息,最终实现机器人导航。这里又要盗官网的图了。 上面这个图很好的展示了move_base的…

机器学习笔记(十四):异常检测

目录 1)Problem motivation 2)Gaussian distribution 3)Algorithm 4)Developing and evaluating an anomaly detection system 5)Anomaly detection vs. supervised learning 6)Choosing what featur…

【Gym - 101606F】Flipping Coins(概率dp)

题干: Here’s a jolly and simple game: line up a row of N identical coins, all with the heads facing down onto the table and the tails upwards, and for exactly K times take one of the coins, toss it into the air, and replace it as it lands eith…

ROS actionlib学习(一)

actionlib是ROS中一个很重要的功能包集合,尽管在ROS中已经提供了srevice机制来满足请求—响应式的使用场景,但是假如某个请求执行时间很长,在此期间用户想查看执行的进度或者取消这个请求的话,service机制就不能满足了&#xff0c…

机器学习笔记(十五):推荐系统

目录 1)Problem formulation 2)Content-based recommendations 3)Collaborative filtering 4)Collaborative filtering algorithm 5)Vectorization: Low rank matrix factorization 6)Implementation…

*【CodeForces - 280C】Game on Tree(期望模型,期望的线性性)

题干: Momiji has got a rooted tree, consisting of n nodes. The tree nodes are numbered by integers from 1 to n. The root has number 1. Momiji decided to play a game on this tree. The game consists of several steps. On each step, Momiji chooses…

武侠风云(基础版)

基本任务: 1 建立角色类,角色拥有生命值的属性和攻击的方法,攻击值是随机的。 2 建立职业子类,刀客,(伤害少,血量多)剑客(伤害正常,血量正常,有几…

机器学习笔记(十六):大规模机器学习

目录 1)Learning with large datasets 2)Stochastic gradient descent 3)Mini-batch gradient descent 4)Stochastic gradient descent convergence 1)Learning with large datasets 回顾一下我们之前提到的这句…

【ZOJ - 3329】One Person Game(带循环的概率dp,数学期望,高斯消元,数学)

题干: There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K…